PDFs in MC and MC tuning

Judith Katzy (DESY) On behalf of ATLAS MC group

outline

- Study: pdf effects in pythia's soft QCD models
- Use case: MC generators and pdfs used in ATLAS
- Discussion: open issues related to pdfs in MCs

New ATLAS tunes of Pythia6 and Pythia8 to different pdfs

- Pythia6: 2-stage tune of parton shower, multiparton-interaction model (MPI) and color reconnection (CR) tunes done with 5 different pdfs:
 - LO*, LO**, CT09MC2, CTEQ6L1, MSTW2008LO
- Pythia8: MPI and CR tunes with 2 different pdfs:

• LO**, CTEQ6L1

Study pdf effects in Pythia's soft QCD models

New ATLAS pythia6 tune

- 2-stage tune:
 - 1. Shower
 - 2. Multi-parton-interaction model (MPI) and color reconnection (CR)
- Tunes done for 5 pdfs: LO*, LO**, CT09MC2, CTEQ6L1, MSTW2008LO
- Tunes are performed as X² minimisation between data and an interpolated MC response function using the Rivet and Professor tools
- Distribution of statistical weight of the various observables during parameter optimisation identical for all pdfs

Pythia6 - shower tune

• Tune shower parameters:

- Initial State Radiation kt cut-off PARP(62)
- ISR scale factor on as evaluation scale PARP(64)
- Λ_{QCD} for FSR off ISR partons PARP(72)
- Observables:
 - ATLAS and CDF Jet shapes
 - ATLAS trackjet fragmentation
 - ATLAS and D0 dijet decorrelations

Description	Parameter	LO**	LO*	СТ09MC2 MST	W2008LO	CTEQ6L1
ISR cut-off	PARP(62)	2.17	2.29	2.20	1.26	1.13
ISR scale factor						
on α_s eval. scale	PARP(64)	0.60	0.57	0.73	1.11	0.68
Λ_{QCD} for FSR off ISR	PARP(72)	0.43	0.42	0.36	0.49	0.53

Optimised ISR cut-off parameters similar for LO pdfs and mLO pdfs LO pdfs have highest values for $\Lambda_{\rm QCD}$ of FSR off ISR

Pythia6 and Pythia8 – MPI tunes

- Tune parameters:
 - MPI: Pt0 cut-off of MPI model and its evolution with cms energy, matter distribution
 - CR: its strength and suppression of fast moving strings
- Main observables:
 - <u>Min.bias: ATLAS minimum bias charged particle production data at</u> <u>900GeV and 7 TeV:</u> dn_{ch}/deta, dn_{ch}/dp_t, <p_t> vs N_{ch}, N_{ch} with different data samples varying in N_{ch} and p_{tmi}
 - Underlying event: ATLAS charged particle production in transverse region at 900 GeV and 7 TeV: N_{ch} vs p_t , Σ pt vs pt For pythia6 in addition CDF underlying event data
- Tunes:
 - Only to min.bias observables: AMBT2B (Pythia6) AM1 (Pythia8)
 - Only to underlying event observables: AUET2B(Pythia6), AU1(Pythia8)
 - To all observables: A1 (Pythia8)

MB: Charged particle production

MB: charged particle multiplicity

Charged particle density in underlying event

nd

4

ATLAS data

<u>, | , , , | , , , | , , , | , , , | , , , | , , , | , , , | , , , </u> 6 8 10 12 14 16 18 20

AUET₂B (CTEQ6L₁)

AUET2B (MSTW2008LO)

 p_{\perp} (leading track) [GeV]

Slight deviation of mod LO pdfs in "minimum bias" region due to incompatibility of slopes in UE ramp and plateau

LO pdfs very good description – CTEQ6L1 best

Pythia6

Σp_t density in underlying event

Influence of gluon density on ptmin cut-off

PARP(82)

PARP(82) vs. gluon $xf(x, Q^2)$

At low scales p_{tmin} cut-off correlated with gluon density (as expected from the model)

Influence of gluon density on model parameters

Conclusions from pythia tunes with different pdfs

- MC adapted pdfs fail to describe pt spectrum of min.bias data
- Tension in underlying event distributions between low p_{tlead} rise and high p_{tlead} plateau with MC adapted pdfs
- LO pdfs in particular CTEQ6L1 give best describe of data
- Tunes to NLO pdfs are under study

LO vs MC adapted pdfs

• LO pdfs best in describing min.bias distributions

• MC adapted pdfs okay for underlying event and their use is justified through the behaviour at the hard ME

MC generators & their pdfs in ATLAS

- NLO generators (POWHEG, MC@NLO) with NLO pdfs used where available – mostly SM with low parton multiplicity final state
- POWHEG allows to use different pdfs for ME and shower part, i.e. NLO in ME, LO for pythia/herwig shower
- LO generators still needed for multi-leg final states, soft QCD (pile-up!), SUSY and other BSM models
- Still need for appropriate pdfs describing LO models currently LO pdfs seem to do this best
- Updated LO pdfs from the pdf fitters welcomed...

Questions and discussion points

Guidelines on uncertainties due to LO pdfs?

- Option 1:
 - Check whether results depend significantly on pdf
 - quote pdf used for the calculation/results
 - Derive results with at least 2 different pdfs to show that pdf dependence exist
- Option 2:
 - Derive results with different LO pdfs and take variations as systematic uncertainty
- Deprecated treatment:
 - Take error from NLO pdfs (where they exist) and vary around central value of LO pdf
- Option 3:PDF fitters to provide error sets for LO pdfs as e.g. MSTW2000LO and experimentalist use these
- More options...?
- How to relate with other systematic uncertainties like scale variations, model uncertainties...?

Problem with LO* pdf for high mass final states

QCD dijet pt spectrum

Note: only one NLO MC generator for this process yet (POWHEG)

Analysis also use NLOJet++ with Correction factors for hadronisation Derived from Pythia and Herwig

Flat k-factors for modLO pdfs possible?

Back-up slides

Backup – Nch with pt>100MeV

• MC@NLO+herwig, same pdf

• POWHEG+pythia/herwig with different pdfs possible

Alpgen LO pdf
Pythia, Herwig and other LO generators for SUSY, exotic models and soft QCD

Optimised Pythia6 parameters

Tune type	PDF	PARP(77)	PARP(78)	PARP(82)	PARP(84)	PARP(90)
AMBT2B	CTEQ6L1	0.357	0.235	2.34	0.605	0.246
	MRST LO*	0.535	0.263	2.06	0.802	0.284
	MRST LO**	1.101	0.248	2.59	0.667	0.255
	CT09MC2	0.900	0.187	2.42	0.606	0.244
AUET2B	CTEQ6L1 MSTW2008LO	0.491 0.597	0.311 0.371	2.26 1.99	0.443 0.499	0.249 0.266
	MRST LO* MRST LO** CT09MC2	0.845 0.901 0.869	0.279 0.309 0.285	2.22 2.44 2.29	0.507 0.560 0.545	0.267 0.241 0.212

Xg(x)