News from CTEQ-TEA PDF analysis

Pavel Nadolsky

Southern Methodist University Dallas, TX, U.S.A.

in collaboration with M. Guzzi, J. Huston, H.-L. Lai, Z. Li, J. Pumplin, D. Stump, and C.-P. Yuan

July 4, 2011

CT10.1 global PDF analysis Tentative release: this summer

General-purpose CT10 and CT10W NLO PDFs: published in Physical Review D82, 074024 (2010)

CT10.1 NLO set: extension of the CT10W analysis, with alternative treatment of some data sets

- ▶ Tevatron Run-2 electron charge asymmetry (A_{ℓ})
- Inclusive jet production
- CT10.2 NNLO PDFs
 - ▶ Validation of heavy-quark S-ACOT scheme at $O(\alpha_s^2)$

CT10.2 NNLO fit

- Candidate central fits are available (cf. the next slide)
- In progress: studies of parametrization dependence, PDF errors, α_s and m_Q dependence
- Slightly worse χ^2 at NNLO, due to no particular data set:

 $\chi^2_{NNLO}/Npt pprox$ 3154/2765 pprox 1.14 ; $\chi^2_{NLO} pprox$ 3090

- Within χ^2 tolerance from CT10 NLO
- Differences between NLO and NNLO sets are comparable to such differences in ABM & MSTW NNLO PDF sets
- Reduced gluon at $x \to 0$; increased light quarks at $x \approx 10^{-3}$; lower strangeness

Candidate NNLO fit (compared to CT10.1 NLO)

Ratios of central CT10.1 PDFs $\mu = 2 \text{ GeV}$

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

Dependence on α_s in the CT10.1 fit

NLO: $\alpha_s(M_Z) = 0.11964 \pm 0.0064$ at 90% c.l.

NNLO: $\alpha_s(M_Z) = 0.118 \pm 0.005$

CT10AS fit: NMC F_2^d/F_2^p and F_2^p data vs. α_s

Total χ^2 vs. $\alpha_s(M_Z)$ in the CT10AS series

■ We did not find a significant effect of the NMC F_2^d/F_2^p data on α_s , even though a smaller value is mildly preferred. $\chi^2(F_2^d/F_2^p) \approx N_{points} = 123.$

■ NMC F_2^p data prefer a larger α_s , but χ^2 is larger than $N_{points} = 201$.

Replacing F_2^p by the NMC reduced cross section does not significantly change the best-fit value of α_s and its error.

Simplified Aivazis-Collins-Olness-Tung scheme

ACOT, PRD 50 3102 (1994); Collins, PRD 58 (1998) 094002; Kramer, Olness, Soper, PRD (2000) 096007

- Derivation is based upon, and closely follows, the proof of QCD factorization for DIS with massive quarks (Collins, 1998)
- Relatively simple
 - One value of N_f (and one PDF set) in each Q range
 - Straightforward matching based on kinematical rescaling
 - Sets $m_Q = 0$ in ME with incoming c or b
- Reduces to the ZM \overline{MS} scheme at $Q^2 \gg m_Q^2$, without additional renormalization
- Reduces to the FFN scheme at $Q^2 \approx m_Q^2$
 - has reduced dependence on tunable parameters at NNLO

S-ACOT scheme: merging FFN and ZM Preliminary

x=0.01 0.25 S-ACOT- X NNLO FENS Nf=3 NNLO 0.20 ZM NNLO 0.15 $F_{2\,c}(x,Q)$ 0.10 0.05 0.00 Ratio to SACOT 1.1 10 0.9 0.8 0.7 0.6∟ 1.5 3 7 10 2 5 Q (GeV)

ACOT reduces to FFNS at $Q \approx m_c$ and to ZM at $Q \gg m_c$

Les Houches toy PDFs, evolved at NNLO with threshold matching terms

Cancellations between subtractions and other terms at $Q \approx m_c$ and $Q \gg m_c$; details in backup slides

Input parameters of the S-ACOT scheme

At NLO, the charm mass m_c , factorization scale μ , and rescaling variable ζ of CTEQ PDFs are **tuned** to best describe the DIS data

NNLO results for $F_2^{(c)}(x, Q^2)$ - Preliminary

At NNLO and $Q \approx m_c$:

- S-ACOT- χ ($N_f = 4$) \approx FFN ($N_f = 3$) without tuning
- S-ACOT is numerically close to other NNLO schemes
- NNLO expressions are close to the FONLL-C scheme

(Forte, Laenen, Nason, arXiv:1001.2312).

■ ACOT formalism provides recipe-like formulas for implementing NNLO in the GM scheme

0.01 0.02

х

0.05

0.1

 10^{-5} 10^{-4}

 10^{-3}

0.2

Components of inclusive $F_{2,L}(x,Q)$

Components of inclusive $F_{2,L}(x,Q^2)$ are classified according to the quark couplings to the photon

$$F = \sum_{l=1}^{N_l} F_l + F_h \tag{1}$$

 $\begin{array}{ll}
\text{At} & F_{h}^{*} = e_{\bar{h}} \left\{ c_{h,h}^{N,V} \otimes (J_{h/p} + J_{\bar{h}/p}) + C_{h,l}^{*} \otimes \Sigma + C_{h,g}^{*} \otimes J_{g/p} \right\} \\
\mathcal{O}(\alpha_{s}^{2}): & F_{l}^{(2)} = e_{l}^{2} \left\{ C_{l,l}^{NS,(2)} \otimes (f_{l/p} + f_{\bar{l}/p}) + c^{PS,(2)} \otimes \Sigma + c_{l,g}^{(2)} \otimes f_{g/p} \right\}.$ (3)

Structure of factorized expressions is reminiscent of the ZM scheme (e.g., in MVV 2005)

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

Components of inclusive $F_{2,L}(x,Q)$

Lower case $c_{a,b}^{(2)}$, $\hat{f}_{a,b}^{(k)} \rightarrow \text{ZM}$ expressions Zijlstra and Van Neerven PLB272 (1991), NPB383 (1992) S. Moch, J.A.M. Vermaseren and A. Vogt, NPB724 (2005)

Upper case $C_{a,b}^{(2)}$, $F_{a,b}^{(k)}$ $A_{a,b}^{(k)} \rightarrow$ coeff. functions, structure functions and subtractions with $m_c \neq 0$, Buza *et al.*, NPB 472 (1996); EPJC1 (1998); Riemersma, *et al.* PLB 347 (1995); Laenen *et al.* NPB392 (1993)

All building blocks are available from literature

Components of inclusive $F_{2,L}(x,Q)$

The separation into F_l and F_h (according to the quark's electric charge e_i^2) is valid at all Q

The "light-quark" F_l contains some subgraphs with heavy-quark lines, denoted by " $G_{l,l,heavy}$ ".

The "heavy-quark" $F_h \neq F_2^c$:

 $F_2^c = F_h + (G_{l,l,heavy})_{real},$

where $G_{i,j} = C_{i,j}^{(2)}, \ F_{i,j}^{(2)}$, and $A_{i,j}^{(2)}$

CTEQ PDFs vs. the latest data: LHC

Agreement with many LHC measurements

Figures are from ATLAS. Similar results from CMS

Role of assumptions in fits to the Tevatron data

Explored by the CT10.1 analysis

- Only one bin of D0 Run-2 electron charge asymmetry A_e(y_e) with the weakest p_{Te} cut is included
 - reduced theoretical uncertainty
- No D0 Run-2 muon A_µ(y_µ) (experim. data for 4.9 fb⁻¹ still preliminary)
- Fact. scale $\mu = p_T$ (instead of $p_T/2$) in Tevatron jet cross sections

d(x,Q)/u(x,Q) at Q = 85 GeV

CT10.1 is fitted only to the $p_T^e > 25$ GeV bin of CDF Run-2 $A_e(y_e)$; does not include $A_\mu(y_\mu)$; has a smaller d/u than CT10W

$A_{\ell}(y_{\ell})$ and PDF parametrization dependence

At x > 0.5, the slope of d/u is not constrained by the data. Existing parametrizations underestimate the PDF uncertainty on d/u at x > 0.1 and \bar{u}/\bar{d} at x < 0.01.

PDFs based on Chebyshov polynomials improve agreement with D0 Run-2 A_e , but are outside of current CTEQ/MSTW bands (*Pumplin*)

This ambiguity is reduced by $A_{\ell}(y_{\ell})$ at the LHC, which constrains d/u and \bar{d}/\bar{u} at $x \sim 0.01$.


```
CT10(W) vs. A_{\ell}: LHC-B
```


LHCb asymmetry measurement: from PDF4LHC Mar 7

LHC-B marginally prefers CT10W to CT10

Do CTEQ PDFs disagree with D0 (di)-jet data?

Pumplin et al., PRD 80 (2009) 014019: no significant tension between CTEQ PDFs and incl. jet data; D0 presentation exaggerates the "discrepancy"

Data and NLO theory, from the D0 paper and CT09 analysis

Jet production: issues to consider

- Significant scale dependence
 - Comparisons to CT10 PDFs must use $\mu = p_T^{jet}/2$, the same scale as in the CT10 fit
- Differences between NLO codes; sensitivity to resummation of jet differential distributions (Alioli et al., arXiv:1012.3380)

Correlated systematic shifts reconcile the data with a wider range of PDFs than in the standalone experimental analysis

Resummation effects in (di)jet production

Figure 8: Predictions for the fixed-order NLO cross sections to the analogous POWHEG hardestemission one, for symmetric cuts on the transverse energies of both the highest and second highest $E_{\rm T}$ jets, at the Tevatron and LHC, in the left- and right-hand plots respectively.

Alioli et al., arXiv:1012.3380

Les Houches 2011 workshop: ongoing benchmark comparisons of codes for jet cross section calculations

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

Conclusions

- In the CTEQ-TEA fit, an NNLO calculation for $F_{2,L}^{c,b}$ in the S-ACOT scheme is demonstrated to be viable.
- First NNLO fits are being investigated
- CT10.1: a study of new Tevatron data sets, PDF parametrization issues
- **arXiv:1101.0561**: synopsis of recent CTEQ-TEA publications
 - Search for deviations from DGLAP evolution at small x (not found); PDFs for leading-order showering programs; constraints on color-octet fermions

Backup slides

CT10 parton distribution functions (PRD82, 074024 (2010))

- General-purpose NLO PDFs
- Include combined HERA-1 DIS and Tevatron Run-2 inclusive jet data
- detailed analysis of the Tevatron Run-2 W asymmetry (A_{ℓ}) data
 - CT10 and CT10W sets, with different treatment of A_{ℓ}
- Additional PDF sets with a varied
 α_s and for 3 and 4 active flavors

Backup slides 1. Details on S-ACOT- χ scheme at NNLO

S-ACOT input parameters

At $Q \approx m_c, F_2^c$ depends significantly on

- 1. Charm mass: $m_c = 1.3 \text{ GeV}$ in CT10
- 2. Factorization scale: $\mu = \sqrt{Q^2 + \kappa m_c^2}$; $\kappa = 1$ in CT10
- 3. Rescaling variable $\zeta(\lambda)$ for matching in γ^*c channels (Tung et al., hep-ph/0110247; Nadolsky, Tung, PRD79, 113014 (2009))

$$\begin{split} F_i(x,Q^2) &= \sum_{a,b} \int_{\zeta}^1 \frac{d\xi}{\xi} \, f_a(\xi,\mu) \, C^a_{b,\lambda}\left(\frac{\zeta}{\xi},\frac{Q}{\mu},\frac{m_i}{\mu}\right) \\ &\quad x = \zeta \left/ \left(1 + \zeta^\lambda \cdot (4m_c^2)/Q^2\right), \text{ with } 0 \le \lambda \lesssim \end{split}$$

CT10 uses

$$\zeta(\mathbf{0}) \equiv \chi \equiv x \left(1 + 4m_c^2/Q^2\right),$$

motivated by momentum conservation

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

1

Details of the NNLO computation

- **NNLO** evolution for α_s and PDFs (HOPPET)
 - ▶ matching coefficients relating the PDFs in N_f and N_{f+1} schemes (Smith, van Neerven, et al.)
- **NNLO** Wilson coefficient functions for $F_2(x, Q)$, $F_L(x, Q)$
- Pole quark masses or \overline{MS} quark masses as an input
- CT10.1: pole masses $m_c = 1.3$ GeV, $m_b = 4.75$ GeV (as in CT10)

Classes of Feynman diagrams I

مر

NLO $\gamma^*~g$

ACOT I: Phys.Rev.D50:3085–3101,1994 ACOT II: Phys.Rev.D50:3102–3118,1994

+ /000 <

NNLO: $\gamma^*\ g$

Riemersma et. al. Phys.Lett. B347 (1995)

Classes of Feynman Diagrams II

Cancellations between Feynman diagrams

Validity of the S-ACOT calculation was verified by checking for certain cancellations at $Q \approx m_c$ and $Q \gg m_c$

 $Q \approx m_c:$

$$D_{C1}^{(2)} \ll D_{C0}^{(2)} \ll D_{C0}^{(1)} \le F_2^c(x,Q)$$

 $Q \gg m_c:$

$$D_g^{(2)} \ll D_g^{(1)} < F_2^c(x, Q)$$

These cancellations are indeed observed in our results

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

NNLO: Cancellations at $Q^2 \approx m_c^2$

NNLO: Cancellations at $Q^2 \approx m_c^2$

NNLO: Cancellations at $Q \gg m_c$

 $D_g^{(1)}$ is of order of α_s^2 while $D_g^{(2)}$ is of order of α_s^3 .

(5)

F_2^c at NNLO: Cancellations at Q = 10 GeV

NNLO results for $F_2^{(c)}(x, Q^2)$ - Preliminary

At NNLO and $Q \approx m_c$:

S-ACOT- χ ($N_f = 4$) \approx FFN ($N_f = 3$) without tuning

S-ACOT is numerically close to other NNLO schemes

■ NNLO expressions are close to the FONLL-C scheme

(Forte, Laenen, Nason, arXiv:1001.2312).

■ ACOT formalism provides recipe-like formulas for implementing NNLO in the GM scheme

Dependence on rescaling is also reduced

Backup slides2. W charge asymmetry

CT10(W): radiative contributions to $A_{\ell}(y_{\ell})$

Default calculation: $A_{\ell}(y)$ at NNLL-NLO, using lookup tables for $\sigma(p_T^{\ell}, y_{\ell})_{NNLL+NLO}/\sigma(p_T^{\ell}, y_{\ell})_{LO}$ from ResBos (Balazs, Yuan, PRD 56, 5558 (1997); Landry, Brock, RN. Yuan, PRD67, 073016 (2003)).

Cross check: include NNLO corrections at $Q_T \approx M_W$ (Arnold & Reno. 1989); $A_\ell(y_\ell)$ changes by a few percent at the highest y_ℓ and $p_T > 35$ GeV

 magnitude of changes is comparable with full NNLO terms (Catani, Ferrera, and Grazzini, JHEP 05, 006 (2010))

changes are small compared to the experimental errors

CT10 and CT10W predictions for $A_e(y_e)$ (D0 Run-2)

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

CDF Run-2 and D0 Run-2 W lepton asymmetry

- CT10 does not include the Run-2 $A_{\ell} \Rightarrow$ disagrees with A_{ℓ} , due to tension between A_{ℓ} and DIS F_2^d/F_2^p .
- CT10W includes 3 $p_{T\ell}$ bins of the electron $A_e(y_e)$ and one bin of $A_{\mu}(y_{\mu})$ from D0 Run-2 (2008).
- CT10.1 includes only the $p_T > 25$ bin of $A_e(y_e)$
- Many other PDFs fail.

Agreement of		Source or
PQCD with D0 $A_e(y_e)$	χ^2/npt	comments
CTEQ6.6, NLO	191/36=5.5	Our study;
CT10W, NLO	78/36=2.2	Resbos, NNLL-NLO
	With $A_{\mu}(y_{\mu})$: 88/47=1.9	
ABKM'09, NNLO	540/24=22.5	Catani, Ferrera, Grazzini,
MSTW'08, NNLO	205/24=8.6	JHEP 05, 006 (2010)
JR09VF, NNLO	113/24=4.7	

Why difficulties with fitting $A_{\ell}(y_{\ell})$?

1. $A_{\ell}(y_{\ell})$ is very sensitive to the average slope s_{du} of $d(x, M_W)/u(x, M_W)$

$$A_{\ell}(y_{\ell}) \sim A_{\ell}(y_W)|_{LO} \propto \frac{1}{x_1 - x_2} \left[\frac{d(x_1)}{u(x_1)} - \frac{d(x_2)}{u(x_2)} \right]; \quad x_{1,2} = \frac{Q}{\sqrt{s}} e^{\pm y_W}$$

Berger, Halzen, Kim, Willenbrock, PRD 40, 83 (1989); Martin, Stirling, Roberts, MPLA 4, 1135 (1989); PRD D50, 6734 (1994); Lai et al., PRD 51, 4763 (1995)

2. Constraints on s_{du} by fixed-target $F_2^d(x,Q)/F_2^p(x,Q)$ are affected by nuclear and higher-twist effects Accardi, Christy, Keppel, Monaghan, Melnitchouk, Morfin, Owens, PRD 81, 034016 (2010)

Challenges with fitting $A_{\ell}(y_{\ell})$

Small changes in s_{du} cause significant variations in A_{ℓ}

Lai et al., PRD 51, 4763 (1995)

Alternative constraints on d/uby $F_2^d(x,Q)/F_2^p(x,Q)$ from fixed-target DIS are affected by nuclear and higher-twist effects

Accardi, Christy, Keppel, Monaghan, Melnitchouk, Morfin, Owens, PRD 81, 034016 (2010)

d(x,Q)/u(x,Q) at Q = 85 GeV

CT10W prefers a larger slope of d/u, has a smaller uncertainty than CTEQ6.6 or CT10

CT10W shows tension with NMC, BCDMS $F_2^{p,d}$ data

Why difficulties with fitting $A_{\ell}(y_{\ell})$?

3. Existing parametrizations underestimate the PDF uncertainty on d/\boldsymbol{u}

PDFs based on Chebyshov polynomials improve agreement with D0 Run-2 A_e , but are outside of current CTEQ/MSTW bands (*Pumplin*)

This ambiguity is reduced by $A_{\ell}(y_{\ell})$ at the LHC, which constrains d/u and \bar{d}/\bar{u} at $x \sim 0.01$.

Why difficulties with fitting $A_{\ell}(y_{\ell})$?

4. Experimental A_{ℓ} with lepton $p_{T\ell}$ cuts is sensitive to $d\sigma/dq_T$ of W boson at transverse momentum $q_T \rightarrow 0$.

- Fixed-order (N)NLO calculations (DYNNLO, FEWZ, MCFM,...) predict a wrong shape of $d\sigma/dq_T$ at $q_T \rightarrow 0$.
- Small- q_T resummation correctly predicts $d\sigma/dq_T$ in this limit.
- CT10(W) PDFs are fitted using a NNLL-NLO+K resummed prediction for A_{ℓ} (ResBos); **must not be used with fixed-order predictions for** A_{ℓ} .

For example:

```
\chi^2(CT10W+ResBos) = 1.9 N_{pt} (us);
```

 $\chi^2(ext{CT10W+DYNNLO}) = 8.4\,N_{pt}$ (NNPDF)

PDF4LHC meeting, DESY

Charge asymmetry in p_T^e bins (CDF Run-2, 207 pb^{-1})

Without the p_T^e cut (FEWZ):

With p_{Te} cuts imposed, $A_{ch}(y_e)$ is sensitive to small- Q_T resummation

PN, 2007, unpublished; arXiv:1101.0561


```
CT10(W) vs. A_{\ell}: LHC-B
```


LHCb asymmetry measurement: from PDF4LHC Mar 7

LHC-B marginally prefers CT10W

Dijet mass distributions from D0 Run-2 0.7 fb⁻¹, arXiv:1002.4594

The data appear to disfavor CTEQ6.x/CT10 NLO predictions, for the selected theory parameters

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

Backup slides 3. Search for deviations from DGLAP evolution at small x and Q

A_{cut} fits to combined HERA data

Fitting procedure:

- Include only DIS data above an A_{cut} line
- Compare the resulting PDFs with DIS data below the A_{cut} line, in a region that is "connected" by DGLAP evolution

Pavel Nadolsky (SMU)

PDF4LHC meeting, DESY

CT10: A_{cut} fits to DIS data at $Q > Q_0 = 2$ GeV

Motivation

Search for deviations from DGLAP evolution at smallest x and Q

Follow the procedure proposed by NNPDF (Caola, Forte, Rojo, arXiv: 1007.5405)

CT10: A_{cut} fits to DIS data at $Q > Q_0 = 2$ GeV

CT10

Two CT10-like fits to data at $A_{gs} > 1.5$, with different parametrizations of g(x, Q)

$$\chi_i^2 = \frac{(\text{Shifted Data} - \text{Theory})^2}{\sigma_{uncor}^2}$$

Large syst. shifts at $A_{gs} < 1.0$, in a pattern that could mimic a slower Q^2 evolution

CT10: A_{cut} fits to DIS data at $Q > Q_0 = 2$ GeV

CT10, cont.

$\delta\chi^2\sim$ 0 at $A_{gs}>$ 1.0 (no difference)

$\delta\chi^2 =$ 0 - 1.5 at A_{gs} < 1.0, with large uncertainty

 \Rightarrow Disagreement with the "DGLAP-connected" data at $A_{gs} < A_{cut}$ is not supported by the CT10 fit