Quantum Approximate Optimization Algorithm

Jamal Slim

DESY - FTX jamal.slim@desy.de

Software weekly meetings October 26, 2023

The Quantum Approximate Optimization Algorithm

 The Quantum Approximate Optimization Algorithm (QAOA): obtain approximate solutions of the problem of minimizing

$$C(x) = \sum_a w_a C_a(x)$$

- where x is n-bit string, w_a are real weights and each C_a is a boolean function
- E.g. Max-Cut problem, with every w_a equal to 1 and C_a takes the following form

$$x_i \oplus x_j$$

QAOA: Introduction

• For each boolean function C_a , a Hamiltonian H_a of the form can be constructed as

$$a_0I + \sum_i a_iZ_i + \sum_{i < j} a_{ij}Z_iZ_j + \sum_{i < j < k} a_{ijk}Z_iZ_jZ_k$$

such that for every string x it holds that

$$C_a(x) = \langle x|H_a|x\rangle$$

• Then, minimizing C(x) is equivalent to finding the ground state of

$$H_f = \sum_a w_a H_a$$

• given that H_f is diagonal and

$$C(x) = \langle x|H_f|x\rangle$$

QAOA: State preparation

The time dependent Hamiltonian can also be written as

$$H(t) = (1 - \frac{t}{T})H_i + \frac{t}{T}H_f$$

with

$$H_i = -\sum_{j=1}^n X_j$$

 As an approximation of the evolution of the system, we consider parametrized states of the form state of

$$\prod (e^{i\Delta t(AH_i+BH_f)})\ket{\psi_0}$$

Using Lie-Trotter formula

$$e^{i\Delta t(AH_i+BH_f)} pprox e^{i\Delta t(AH_i)}e^{i\Delta t(BH_f)}$$

QAOA: State preparation

• Using a quantum circuit to prepare a state of the form

$$|\beta,\gamma\rangle = e^{i\beta_p H_i} e^{i\gamma_p H_f} \cdots e^{i\beta_1 H_i} e^{i\gamma_1 H_f} |\psi_0\rangle$$

- for a fixed p, $\vec{\beta} = (\beta_1 \cdots \beta_p)$ and $\vec{\gamma} = (\gamma_1 \cdots \gamma_p)$ whole state $\langle \beta, \gamma \rangle$
- $|\psi_0\rangle = \sum_{i=0}^{2^n-1} |x\rangle$

5/8

Jamal Slim (UC) QAOA October 26, 2023

QAOA: The Algorithm

- Choose a value for p and some initial angles β , γ
- Prepare the state $\langle \beta, \gamma \rangle$
- Estimate the energy $E(\beta, \gamma) = \langle \beta, \gamma | H_f | \beta, \gamma \rangle$ of $|\beta, \gamma\rangle$
- vary β and γ in order to minimize $E(\beta, \gamma)$
- If the stopping criterium is met, stop. Else, go to 2

Step 2 is carried out on the quantum computer and steps 1, 3 and 4, on a classical one

6/8

Rotations

- $\psi_0 = \sum_{i=0}^{2^n-1} |x\rangle$ can be prepared with Hadamard gates
- Each $e^{-i\beta_k X_j}$ is a rotation $R_X(2\beta_k)$ or equivalently
- For $e^{-i\gamma H_f X_j}$
- Compute the parity of X_i with CNOT gates
- Apply $R_Z(2\gamma_k)$ on the qubit where we have computed the parity
- Uncompute the parity

Rotations

- $|\psi_0
 angle = \sum_{i=0}^{2^n-1} |\psi_0
 angle$ can be prepared using Hadamard gates
- Each $e^{-i\beta_k X_j}$ is a rotation $R_X(2\beta_k)$ or equivalently

$$|x_j\rangle$$
 — H — $R_Z(2\beta_k)$ — H

- For $e^{-i\gamma H_f X_j}$ is a bit more complicated:
- Implementing $e^{-i\gamma H_t X_j}$ only requires $e^{-i\gamma Z_{i_1} \cdots Z_{i_j}}$
- $e^{-i\gamma Z_{i_1} \cdots Z_{i_j}}$ is diagonal in the computational basis
- $|x\rangle\mapsto e^{-i\gamma_k}\,|x\rangle$ if $x_{i_1}\oplus\cdots\oplus x_{i_j}=0$ mod 2
- $|x\rangle\mapsto e^{i\gamma_k}\,|x\rangle$ if $x_{i_1}\oplus\cdots\oplus x_{i_i}=1$ mod 2
- This is equivalent to the R_z rotation
- Compute the parity of X_j with CNOT gates
- Apply $R_Z(2\gamma_k)$ on the qubit where we have computed the parity
- Uncompute the parity

