Axion Beyond Discoveries: Measuring Axion Couplings

A very brief overview

Maurizio Giannotti University of Zaragoza, CAPA

AxionFest DESY, 28–31 January 2024

Wish List

 \rightarrow Getting the couplings

 \rightarrow Getting info on the Universe

 \rightarrow Getting info on the model

Measuring the Couplings

Best option: Axion-Photon Coupling

Solar Axions

Best option (for now) \rightarrow BabyIAXO

→ J. Redondo, <u>JCAP 1312 (2013)</u> → S. Hoof, J. Jaeckel, L. J. Thormaehlen <u>JCAP 09 (2021) 006</u>

 \rightarrow find $g_{ae}/g_{a\gamma}$ from spectra? Example: Threshold at 0.3 keV $\frac{\Phi_{(0.3-1)\text{keV}}}{\Phi_{\text{tot}}} \simeq 2.4\%$ (KSVZ) where $\Phi_{\text{tot}} = \Phi_{(0.3-10)\text{keV}}$. DFSZ with typical couplings $g_{ae}/g_{a\gamma} = 5 \times 10^{-2} \text{ GeV},$ $\frac{\Phi_{(0.3-1)\text{keV}}}{2} \simeq 22\%$ (DFSZ) Using other bins (e.g., 1-2 keV) is much less efficient. No significant improvement in going down to 0.1 keV.

Direct detection of g_{ae}

Inferring g_{ae} directly not likely in near future because of strong astro bounds

E. Aprile et al., <u>Phys.Rev.Lett. 129 (2022)</u>

Axion Nucleon Couplings

The Sun ...

- $p + d \rightarrow {}^{3}\text{He} + a$
- Searched by CAST JCAP 03 (2010)
- Borexino Phys.Rev.D 85 (2012)
- and using previous SNO data Phys.Rev.Lett. 126 (2021)
- Recent analysis of the JUNO sensitivity shows potential to search in unexplored regions G. Lucente, N. Nath, F. Capozzi, MG, A. Mirizzi, Phys.Rev.D 106 (2022) 12
- Maybe accessible to IAXO (work in progress)
- ${}^{57}\text{Fe}^* \rightarrow {}^{57}\text{Fe} + a$
- Searched by CAST JCAP 12 (2009) + BabyIAXO Eur.Phys.J.C 82 (2022)
 - New dedicated project under commissioning → <u>ISAI (Investigating</u> <u>Solar Axion by Iron-57)</u>,

 $^{7}\text{Li}^{*} \rightarrow ^{7}\text{Li} + a$

 169 Tm + a(8.4 keV)

- Searched by Borexino *Eur.Phys.J.C* 54 (2008)
- CAST JCAP 03 (2010)
- Thulium garnet crystal as a bolometric detector, Derbin et al., (2023) <u>JETP Letters, Volume 118, Issue 3, p.160-164</u>

... + Supernovae

Direct Detection

\rightarrow Cherenkov

- A. Lella et al., <u>arXiv:2306.01048;</u>
- Vonk, Guo, Meißner, <u>Phys.Rev.D</u> <u>105 (2022)</u>
- Li, Hu, Guo, Meißner, <u>2312.02564</u>
- P. Carenza et al., <u>arXiv:2306.17055</u>

 \rightarrow Colliders

- S. Asai, Y. Kanazawa, T. Moroi, T. Sichanugrist <u>Phys.Lett.B 829 (2022)</u>
- \rightarrow Heliscopes
- Ge, Hamaguchi, Ichimura, Ishidoshiro, Kanazawa, <u>JCAP 11 (2020)</u>;

Indirect detection

Through photon oscillations in B_{ext}

- F. Calore et al. e-Print: <u>2306.03925</u>
- A. Lella et al. In preparation
- Meyer et al. <u>Phys.Rev.Lett. 118 (2017)</u>

Post-Discovery: Axion Telescopes

Detecting stellar axions would allow to understand a lot about stars.

Solar magnetic field
 C. A. J. O'Hare, A. Caputo, A. J. Millar, E. Vitagliano <u>Phys.Rev.D 102 (2020) 4</u>

Solar temperature profile
 S. Hoof, J. Jaeckel, L. J. Thormaehlen, <u>arXiv:2306.00077</u>

Solar chemical composition
 J. Jaeckel, L. J. Thormaehlen, <u>Phys.Rev.D 100 (2019) 12</u>

. . . .

Post-Discovery: Axion Telescopes

Model	Phase	4 []	$\frac{1}{\log L_{eff}}$	$\log_{10} \frac{T_{\rm eff}}{\rm K}$	Primakoff			Bremsstrahlung			Compton		
		$\iota_{\rm cc}$ [yr]	$\log_{10} \overline{L_{\odot}}$		C^P	E_0^P [keV]	β^P	C^B	E_0^B [keV]	β^B	C^C	E_0^C [keV]	β^C
0	He burning	155000	4.90	3.572	1.36	50	1.95	1.3E-3	35.26	1.16	1.39	77.86	3.15
1	before C burning	23000	5.06	3.552	4.0	80	2.0	2.3E-2	56.57	1.16	8.55	125.8	3.12
2	before C burning	13000	5.06	3.552	5.2	99	2.0	6.4E-2	70.77	1.09	17.39	156.9	3.09
3	before C burning	10000	5.09	3.549	5.7	110	2.0	8.9E-2	76.65	1.08	22.49	169.2	3.09
4	before C burning	6900	5.12	3.546	6.5	120	2.0	0.136	85.15	1.06	31.81	186.4	3.09
5	in C burning	3700	5.14	3.544	7.9	130	2.0	0.249	97.44	1.04	50.62	210.4	3.11
6	in C burning	730	5.16	3.542	12	170	2.0	0.827	129.17	1.02	138.6	269.1	3.17
7	in C burning	480	5.16	3.542	13	180	2.0	0.789	134.54	1.02	153.2	279.9	3.15
8	in C burning	110	5.16	3.542	16	210	2.0	1.79	151.46	1.02	252.7	316.8	3.17
9	in C burning	34	5.16	3.542	21	240	2.0	2.82	181.74	1.00	447.5	363.3	3.22
10	between C/Ne burning	7.2	5.16	3.542	28	280	2.0	3.77	207.84	0.99	729.2	415.7	3.23
11	in Ne burning	3.6	5.16	3.542	26	320	1.8	3.86	224.45	0.98	856.4	481.2	3.11

$$\frac{d\dot{N}_a}{dE} = \frac{10^{42}}{\text{keVs}} \left[C^P g_{11}^2 \left(\frac{E}{E_0^P} \right)^{\beta^P} e^{-(\beta^P + 1)E/E_0^P} + (P \to B, C; g_{11} \to g_{13}) \right]$$

M. Xiao, MG, et al., Phys. Rev. D 106 (2022)

Axion Flux very sensitive to evolutionary stage

Post-Discovery: Axion Telescopes

Alessandro Lella et al., in preparation

Inferring the UV completion?

The leading contribution to the running axion couplings arises from top loop diagrams induced by the axion-top coupling C_t

UV Corrections to Couplings

$$C_{\Psi}(2\text{GeV}) \simeq C_{\Psi}(f_a) + r_{\Psi}^t(m_{\text{BSM}}) C_t(f_a)$$
Analytical Approximations
$$r_3^t(m_{\text{BSM}}) = r_u^t - r_d^t \simeq -0.54 \ln \left(\sqrt{x} - 0.52\right)$$

$$r_0^t(m_{\text{BSM}}) = r_u^t + r_d^t \simeq 3.8 \times 10^{-4} \ln^2 \left(x - 1.25\right) \approx 0$$

$$r_e^t(m_{\text{BSM}}) \simeq -\frac{1}{2} r_3^t$$
with $x = \log_{10} \left(\frac{m_{\text{BSM}}}{\text{GeV}}\right)$

 \rightarrow Di Luzio et al. <u>Phys.Rev.D 108 (2023)</u>

Detection Perspectives for DFSZ axions $f_a[GeV]$

The solar flux of DFSZ axions has <u>always</u> a g_{ae} component.

The IAXO potential for DFSZ parameter space is higher than naively expected.

However, post-discovery uncertainties

Conclusions

- Realistic options to find $g_{a\gamma}$ and perhaps $g_{a\gamma}/g_{ae}$.
- Several options also for some <u>effective</u> nuclear coupling $g_{aN}^{
 m eff}$
- The door to the UV may be the axion-photon coupling or isoscalar nuclear couplings.
- After we find the axions, we can use them to study the sun and other stars. → That will be truly fun!! (See Sebastian talk and ask us questions)