Measuring VMB with the ALPS II Magnet String **Orders of magnitude higher FOM**

Figure of merit: ΔB²L

- Differential index of refraction : $\Delta n = 3 A_e B^2$ ($A_e = 1.32 \times 10^{-24} T^{-2}$) lacksquare
- Phase retardation: $\Gamma = 3A_e(2\pi/\lambda)B^2L$ lacksquare
- ALPS II has $\Delta B^2 L$ 600x larger than leading experiment ullet
 - Challenge: much lower magnet modulation frequency \bullet

Experiment	B _{max}	B min	L	ΔB ² L	f	Se
PVLAS	2.5 T	0 T	1.6 m	10 T ² m	16 Hz	
BMV	6.5 T	0 T	0.14 m	5.8 T ² m	180 Hz	
BFRT	3.9 T	2.6 T	8.8 m	71 T ² m	32 mHz	
ALPS II	5.3 T	0.05 T	212m	6000 T ² m	< mHz	

DESY. ALPS

Challenges with Optical Cavities

Sensitivity at low frequencies

Amplifying the signal

- Phase retardation with cavity: lacksquare $\Gamma = (12 A_e / \lambda) \mathcal{F} B^2 L$
- Cavity finesse amplifies signal
 - Limit to SNR: dynamic birefringence of cavity

Challenge

Birefringence noise appears to \bullet increase at lower frequencies

[m/~/Hz] 10⁻¹⁶ ' 10⁻¹⁷ optical path difference S_{D_n} 10⁻¹⁸ ′ 10⁻¹⁹ ' 10⁻²⁰ ′ 10⁻²¹ ensitivity in 10⁻²² 10⁻²³ ' S

2

Challenges with Optical Cavities

Sensitivity at low frequencies

Amplifying the signal

- Phase retardation with cavity: lacksquare $\Gamma = (12 A_e / \lambda) \mathcal{F} B^2 L$
- Cavity finesse amplifies signal
 - Limit to SNR: dynamic birefringence of cavity

Challenge

- Birefringence noise appears to \bullet increase at lower frequencies
- But we don't know what the \bullet birefringence noise spectrum will look like!

[m/~/Hz] 10⁻¹⁶ ' 10⁻¹⁷ optical path difference S_{D_n} 10⁻¹⁸ ′ 10⁻¹⁹ ' 10⁻²⁰ ′ 10⁻²¹ ensitivity in 10⁻²² 10⁻²³ S

DESY. ALPS

3