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Outline of Talk

The Heliosphere and Energetic Charged Particles

The discovery of the effects of the Sun and
heliosphere on galactic cosmic rays.

The transport of cosmic rays in the heliosphere.
Anomalous Cosmic Rays.
Some current iIssues — Voyager observations.

Summary and conclusions.



The Cosmic Ray Spectrum
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An instructive analog representation of the heliosphere.




There are a Variety of Cosmic-Ray

Time Variations

Irregular fluctuations on a continuum of time
scales — from fractions of seconds to many
years.

Quasi-periodic 27-day, 11-year and 22-year
variations.

Longer-term variations, some apparently cyclic.
There are also related spatial variations.

Most variations are caused by the heliosphere
and, eventually, the Sun.

To understand these, we must understand
cosmic-ray transport.



The magnetic field is fluctuating and turbulent.

Following Fermi’s ideas for acceleration, the transport
of cosmic rays In this turbulent magnetic field is

described statistically. The particles are ‘scattered’ by
magnetic fluctuations at ~ r. This leads to a diffusion,

or random-walk equation.

Particle Trajectory

Scattering




The Transport Equation (first written down by Parker In
1965 — Krymsky, In 1964, presented a less-complete
version):

of . 5 { (S) af} = Diffusion
ot & ;UZJ g? = Convection w. plasma
V4 VS = Grad & Curvature Drift
1V U [ Of } = Energy change
g Olnp = Source

Where the diffusion coefficient and drift velocity due to the large
scale curvature and gradient of the average magnetic field are:

Ii,gjs) iz KLJ_(S,I;J' —|— (Ii” IiJ_) =

5; B
! — pcw =
=l i [32]
This equation is amazingly general, and is still the one used. It only
requires scattering to near-isotropy to be valid




First: Can the Interstellar Medium Cause

Cosmic-Ray Variations?

These could be of two types: the Earth could pass through cosmic-ray spatial
variations in its motion through the interstellar medium, or dynamical variations
In the interstellar medium could cross the solar system.

For spatial variations to exist long enough for the motion of the solar system to
bring the Earth through them, the transport of galactic cosmic rays would have
to be much less rapid than is currently thought to be possible.

Diffusive transport: Consider a fluctuation in the cosmic-rays of scale L, which
has a diffusive lifetime 1 ~ L?/k, where « is the cosmic-ray diffusion coefficient.
If the solar system is moving at a speed Vg, it will take a time L/V¢ to cross this
fluctuation. Therefore, we require L2 /x >>L /V.

Setting V¢ = 20 km/sec and k = (1/3) A c, where A, the diffusion mean free path
>> cosmic-ray gyro-radii, we find that L >> 3 x 1017 cm, which would be
crossed by Earth in >> 104 yrs.

= Shorter than 10% year variations must be heliospheric (solar) in origin.
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Diffusive loss, K

Diffusive loss, K

Earth, V_

Diffusive loss, K

[llustration of the Earth passing through a quasi-static
region of spatial scale L. The diffusive loss time is ~ L?/x.
The Earth passes through the region in ~ L/Vy



Cosmic-Ray variations are seen at all time scales.

They can be observed using a variety of techniques and over
a variety of time scales. In this lecture, the relation to the

basic physics of cosmic-ray transport will be discussed.
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The Sun Produces ‘Cosmic Rays’
(now called SEPs)
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| will not discuss these solar particules further here.



At higher energies, an 11-year variation,
correlated with sunspots, was observed.

From Forbush, JGR 59, 525 From Forbush, JGR 63, 657,
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Originally, a magnetospheric origin of thes was proposed, but
observations in the solar wind showed that they were caused by the
Sun and solar wind -- what we now call the heliosphere.
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The variation of > 3 Gev protons at Earth and
sunspots since 1950 seen by the Climax neutron monitor.
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Early crude illustration of effect of solar wind on galactic cosmic rays
from Parker (1963). We must do more detail.
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Spiral Magnetic Field of Parker

e The solar wind drags out the solar
magnetic field. Because of the large radial
acceleration (expansion) near the Sun, the
field is very nearly radial near the Sun.
Solar rotation leads to a spiral shape. We
can write:

rQosin(0) |
Co
Vaw

B(r,0) = A (TZO)Q _er

{r)

Here, A is generally nearly constant in magnitude around
the Sun, but changes from positive to negative at a current
sheet, called the heliospheric current sheet.






The galactic cosmic rays
enter the heliosphere
through a combination

diffusion (random walk)
and drift.

These motions are
counteracted by outward
convection and the
associated cooling by the
expansion of the wind.

The drift motions are very
significant. They change
sign every solar
maximum- 22-year cycle.

Heliosphere

e Trajectory

Drifts
Solar Wind ws=»
Random Walk \/\




SMIVLLE REVIEW
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The current sheet changes from sunspot minimum to sunspot
maximum




The standard paradigm for galactic and anomalous cosmic rays
in the outer heliosphere

Galactic Cosmic Rays

Trajectory ANOMALOUS COSMIC RAYS

Drifts
Solar Wind  ses=»

Random Walk ™"\




Early results from model
calculations

Normalized C.R. flux
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Results from quasi-steady termination shock
transport models of ACR and GCR.
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[llustration of the latitudinal gradients for 1994 (A<0)

Model Calculation

Multi-spacecraft observations A>O0
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The latitudinal distribution for A>0

Model Calculation

A<DO

ACR Oxygen Flux, 1st Half of 1987 TTITT[T1

Nucleig(m’ sec sr MeVénuc)" at 7 — 25 MeV/nuc
0.0001 0.0010 0.0100° 0.1000 1.0000
i T T T T |

AU, out of HG equator

50

=50

.

1
-50

1 1
0 50
AU, in HG equator




The models predict a 22-year cycle in cosmic rays, as is observed.
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The Recent Sunspot Minimum

e The current minimum Is anomalous, with
many parameters at historic levels.

 This has affected both ACR and GCR.

e This provides an opportunity to increase
our understanding of the variations of
galactic cosmic rays.



The observations of GCR until quite recently.
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The interplanetary magnetic-field magnitude also decreased to
historically low values. It is known that this generally implies larger
diffusion coefficients.
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The effect of changing
the magnetic field
magnitude in a
simulation of cosmic-
ray modulation.
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The low magnetic field strength would be expected
to change the cosmic ray intensity, and it clearly
has.

One possibility is that, since both the rate of
diffusion and the drift velocity vary inversely with B,
we would expect the low magnetic field to result in a
higher cosmic-ray intensity.

The solar wind velocity also became very low, which
would also be expected to increase the intensity.

Hence we can readily understand the high GCR
Intensities. But what causes the difference
between ACR and GCR?



The Physics of Shock Acceleration

* Acceleration charged particles at shocks is
called diffusive shock acceleration.

 The acceleration Is remarkably insensitive
to the parameters. In particular, the
spectrum at the shock does not depend on
the diffusion coefficient unless some
additional physics is included.

 In the heliosphere, the adiabatic cooling
upstream the shock introduces a
dependence of the intensity on the
diffusion coefficient.
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The Observations from Voyager

 The Voyager spacecraft have been
measuring cosmic rays during their 35-
year journey.

e First, V1, In 2005, crossed the termination
shock of the solar wind. Then, in 2007, V2
crossed the shock.

 They have greatly increased our
knowledge of the effects of the
heliosphere on cosmic rays.
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Voyager observations of ACR and A \/m
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The Voyager 2 Termination Shock
Crossing Showed that the Shock Is
Turbulent

* The functioning plasma detector helped to
provide richer data set than from V1.

* Also, the crossing was at a much slower shock
speed.

 The shock crossed V2 several times,
probably because of turbulence caused by the

fluctuating upstream solar wind.
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Guo-Jokipii (2010) considered a varying B. Below is a comparison of
their results with LECP data (provided by Rob Decker). A blunt

heliosphere would, produce similar results. ey o 3 energes neor soce
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Consider the general effect of the spatial variation of acceleration
along the face of a shock front.

SHOCK (non-normal)

bigger source, acceleration

Advection
Diffusion

smaller source

spacecraft

This results in a positive radial gradient along the spacecraft trajecton



Evidence Regarding the Location of the

ACR Source
e In 2000, McDonald et al JJI T (b
published V1 data L o .
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Intensity (arb units)
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The Most-Recent Voyager 1 Data
From a Distance of 121 AU
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Compare V1 Observations with a
Simple Model Calculation
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VOYAGER-1

> 70 MeV/nuc ions (6-Hour Avg)
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Conclusions

* The effects of the heliosphere on cosmic rays
has had two effects:

— They have greatly increased our knowledge of the
transport of cosmic rays.

— They have enabled the use of cosmic rays as
remote probes of the heliosphere.

 We are fortunate at present to have the
Voyager spacecraft to carry out in situ
observations in the very outer reaches.
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