Millepede-II for photon science

Borrowing HEP algorithms for detector alignment with serial crystallography data

Thomas White DESY Photon Science Computing Workshop 10 Nov 2023

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Detector geometry in serial crystallography

Data analysis in serial crystallography relies on accurate detector geometry

Multi-panel detectors: mostly for XFELs, but coming to a synchrotron beamline near you soon....

Algorithms for detector geometry refinement

Second correction: translation

Yefanov, Optics Express 23 (2015) p28459 "geoptimiser" algorithm: Convert peak-reflection offsets to geometry corrections, and take mean.

Prediction refinement/"detector-shift" (in CrystFEL) Refine offsets+cell parameters for each pattern, and take the mean of the detector offset distributions

Ginn (2017), J. Sync. Rad. 24, p1152 "Slip and slide" algorithm: Nelder-Mead minimisation with careful parameterisation, iterative between cell and geometry

+several others

Current state of the art (my opinion)

Brewster, Acta Cryst. D74 (2018) p877 + Waterman, Acta Cryst. D72 (2016) p558

DIALS geometry refinement: One detector geometry model, many crystal models

"Just make the big matrix and get on with solving it"

The "Millepede principle"

The magic part:

$$\boldsymbol{C} := \boldsymbol{C} + \sum_{i} w_{i} \boldsymbol{d}_{i}^{\text{global}} \left(\boldsymbol{d}_{i}^{\text{global}}\right)^{\text{T}} \qquad \boldsymbol{b} := \boldsymbol{b} + \sum_{i} w_{i} r_{i} \boldsymbol{d}_{i}^{\text{global}} \qquad \boldsymbol{H}_{k} = \sum_{i} w_{i} \boldsymbol{d}_{i}^{\text{global}} \left(\boldsymbol{\delta}_{i}^{\text{local}}\right)^{\text{T}}$$

and finally for the track $\boldsymbol{C} := \boldsymbol{C} - \boldsymbol{H}_{k} \boldsymbol{V}_{k} \boldsymbol{H}_{k}^{T} \qquad \boldsymbol{b} := \boldsymbol{b} - \boldsymbol{H}_{k} \left(\boldsymbol{V}_{k} \boldsymbol{b}_{k}\right)$
The 'blue' equations transfer the 'local' information to the global parameters.
After the loop on all tracks the complete information is collected; now the matrix equation for the global parameters has to be solved:

solve $\boldsymbol{C} \Delta \boldsymbol{p}^{\text{global}} = \boldsymbol{b}$ for

Note: matrices C and vectors b from several data sets can be simply added to get combined result.

Blobel, ATLAS Inner Detector Alignment and Commissioning Workshop, Ringberg, June 2006 Shamelessly stolen from https://www.desy.de/~sschmitt/blobel/ATLASalign.pdf

$$\begin{pmatrix} C & \dots & H_k & \dots \\ \hline \dots & \dots & \mathbf{0} & \mathbf{0} \\ H_k^{\mathrm{T}} & \mathbf{0} & C_k^{\mathrm{track}} & \mathbf{0} \\ \dots & \mathbf{0} & \mathbf{0} & \dots \end{pmatrix} \times \begin{pmatrix} \Delta p \\ \dots \\ \Delta q_k^{\mathrm{track}} \\ \dots \end{pmatrix} = \begin{pmatrix} b \\ \dots \\ b_k^{\mathrm{track}} \\ \dots \end{pmatrix} \qquad k = \mathrm{tr}$$

$$\Delta \boldsymbol{p}^{\mathrm{global}}$$
 e.g. by $\Delta \boldsymbol{p}^{\mathrm{global}} = \boldsymbol{C}^{-1} \boldsymbol{b}$

Millepede-II being used in CrystFEL

"align_detector" in recent (development/Git) versions of CrystFEL Used at P11 as part of real-time pipeline ("easy" case):

Work ongoing: better parameterisation, control of "weak modes" and more.

Run number

Other "Millepede problems"?

- \rightarrow One protein model, many conformational states?
- \rightarrow Any calibration problem, not just geometry?

• • • • •

 \rightarrow One set of combined structure factors, many partial data sets (post-refinement)?