New approach to the clustering problem in pixel detectors, in a framework of LUXE experiment

Roman Urmanov

01.05.2023

• Binary output – no information on number of particles or position

• Binary output – no information on number of particles or position

"Pac-Man": adjacent hits combined into clusters. Cluster's "center of mass" is taken for track inference

- Binary output no information on number of particles or position
- LUXE will work in a wide range of pixel occupancies

"Pac-Man": adjacent hits combined into clusters. Cluster's "center of mass" is taken for track inference

- Binary output no information on number of particles or position
- LUXE will work in a wide range of pixel occupancies
- "Pac-Man" up to $\lesssim 10^4 e$ per BX

"Pac-Man": adjacent hits combined into clusters. Cluster's "center of mass" is taken for track inference

"Pac-Man": adjacent hits combined into clusters. Cluster's "center of mass" is taken for track inference

- Binary output no information on number of particles or position
- LUXE will work in a wide range of pixel occupancies
- "Pac-Man" up to $\lesssim 10^4 e$ per BX
- Up to 3×10^5 e per BX in later stages

Hit density at $\xi=7$

"Pac-Man": adjacent hits combined into clusters. Cluster's "center of mass" is taken for track inference

- Binary output no information on number of particles or position
- LUXE will work in a wide range of pixel occupancies
- "Pac-Man" up to $\lesssim 10^4 e$ per BX
- Up to 3×10^5 e per BX in later stages

Hit density at $\xi=7$

Detector reference	Hit density [mm ⁻²]			
	MCD	ATLAS ITk	ALICE ITS3	
Pixel Layer 0	3.68	0.643	0.85	
Pixel Layer 1	0.51	0.022	0.51	

• Step 1: Multivariate Gaussian model – $\mathcal{N}(\mu, \Sigma)$

• Step 1: Multivariate Gaussian model – $\mathcal{N}(\mu, \Sigma)$

• Step 1: Multivariate Gaussian model – $\mathcal{N}(\mu, \Sigma)$

• Step 2: Condition μ , Σ on θ – Neural Network

• Goal - transform a simple (tractable, samplable) distribution into a complex one

- Goal transform a simple (tractable, samplable) distribution into a complex one
- Method apply a sequence of complex transformations

- Goal transform a simple (tractable, samplable) distribution into a complex one
- Method apply a sequence of complex transformations
- Final distribution may not have a tractable density transformation has to be learnable

- Goal transform a simple (tractable, samplable) distribution into a complex one
- Method apply a sequence of complex transformations
- Final distribution may not have a tractable density transformation has to be learnable
- We need:
 - To take gradients with respect to φg has to be differentiable

- Goal transform a simple (tractable, samplable) distribution into a complex one
- Method apply a sequence of complex transformations
- Final distribution may not have a tractable density transformation has to be learnable
- We need:
 - To take gradients with respect to φg has to be differentiable
 - To evaluate likelihood $\mathbb{P}_{Y}(y|\varphi) = \mathbb{P}_{X}\left(g^{-1}(y)|\varphi\right) \left|\det Dg^{-1}(y)\right| g$ has to be invertible

- Goal transform a simple (tractable, samplable) distribution into a complex one
- Method apply a sequence of complex transformations
- Final distribution may not have a tractable density transformation has to be learnable
- We need:
 - To take gradients with respect to φg has to be differentiable
 - To evaluate likelihood $\mathbb{P}_{Y}(y|\varphi) = \mathbb{P}_{X}\left(g^{-1}(y)|\varphi\right) \left|\det Dg^{-1}(y)\right| g$ has to be invertible
- We want:
 - To model complex spaces g has to be expressive

- Goal transform a simple (tractable, samplable) distribution into a complex one
- Method apply a sequence of complex transformations
- Final distribution may not have a tractable density transformation has to be learnable
- We need:
 - To take gradients with respect to φg has to be differentiable
 - To evaluate likelihood $\mathbb{P}_{Y}(y|\varphi) = \mathbb{P}_{X}\left(g^{-1}(y)|\varphi\right) \left|\det Dg^{-1}(y)\right| g$ has to be invertible
- We want:
 - To model complex spaces -g has to be expressive
 - To be computationally feasible g has to have a tractable Jacobian

x

• Coupling layer approach:

 $egin{array}{c} x_2 \ x_1 \end{array}$

- Coupling layer approach:
 - Divide the input vector into two parts

- Coupling layer approach:
 - Divide the input vector into two parts
 - ullet Transform x_1 into a set of parameters ${\pmb \omega}$

- Coupling layer approach:
 - Divide the input vector into two parts
 - ullet Transform x_1 into a set of parameters ${\pmb \omega}$
 - Pass x_1 unchanged

- Coupling layer approach:
 - Divide the input vector into two parts
 - ullet Transform x_1 into a set of parameters ${\pmb \omega}$
 - Pass x_1 unchanged
 - Transform x_2 via $h(.|\boldsymbol{\omega})$

- Coupling layer approach:
 - Divide the input vector into two parts
 - ullet Transform x_1 into a set of parameters $oldsymbol{\omega}$
 - Pass x_1 unchanged
 - Transform x_2 via $h(.|\boldsymbol{\omega})$

- Pluses:
 - Invertibility depends only on $h(.|\omega)$ can use a NN for ω

- Coupling layer approach:
 - Divide the input vector into two parts
 - ullet Transform x_1 into a set of parameters $oldsymbol{\omega}$
 - Pass x_1 unchanged
 - Transform x_2 via $h(.|\boldsymbol{\omega})$

- Pluses:
 - Invertibility depends only on $h(.|\omega)$ can use a NN for ω
 - Jacobian is block-triagonal determinant

is easy to compute

- Coupling layer approach:
 - Divide the input vector into two parts
 - ullet Transform x_1 into a set of parameters $oldsymbol{\omega}$
 - Pass x_1 unchanged
 - Transform x_2 via $h(.|\boldsymbol{\omega})$

- Pluses:
 - Invertibility depends only on $h(.|\omega)$ can use a NN for ω
 - Jacobian is block-triagonal determinant

is easy to compute

- Observations:
 - Predictions look reasonable

- Observations:
 - Predictions look reasonable
 - The shapes are non-gaussian

- Observations:
 - Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters

- Observations:
 - · Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters

- GoF measures:
 - Residuals: $m{r} = m{x} \mathbb{E}_{\Omega}\left[\hat{m{x}}
 ight]$

• Ω – set of all cluster shapes

- Observations:
 - · Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters

- GoF measures:
 - Residuals: $\boldsymbol{r} = \boldsymbol{x} \mathbb{E}_{\Omega}\left[\hat{\boldsymbol{x}}\right]$
 - Covariance: $\boldsymbol{r} = \boldsymbol{R}_i \mathbb{E}_{\Omega_i}[\hat{\boldsymbol{R}}_i]$

Ω – set of all cluster shapes
Ω_i – set of specific cluster shapes

Ny, pix

Vy, pix

- Observations:
 - Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters

- GoF measures:
 - Residuals: $\boldsymbol{r} = \boldsymbol{x} \mathbb{E}_{\Omega}\left[\hat{\boldsymbol{x}}\right]$
 - Covariance: $\boldsymbol{r} = \boldsymbol{R}_i \mathbb{E}_{\Omega_i}[\hat{\boldsymbol{R}}_i]$

• Ω – set of all cluster shapes

- Observations:
 - Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters

- GoF measures:
 - Residuals: $\boldsymbol{r} = \boldsymbol{x} \mathbb{E}_{\Omega}\left[\hat{\boldsymbol{x}}\right]$
 - Covariance: $\boldsymbol{r} = \boldsymbol{R}_i \mathbb{E}_{\Omega_i}[\hat{\boldsymbol{R}}_i]$
 - GoF statisics: Nearest Neighbour mixing
- Ω set of all cluster shapes
- Ω_i set of specific cluster shapes

- Observations:
 - Predictions look reasonable
 - · The shapes are non-gaussian
 - Distributions exist outside the clusters
 - *r* width is due to the hit spread

- GoF measures:
 - Residuals: approximately 0
 - Covariance:

On average: 42.01% error Diag. elements: 27.57% error Off-Diag. elements: 71.98% error

- Observations:
 - Predictions look reasonable
 - · The shapes are non-gaussian
 - Distributions exist outside the clusters
 - r width is due to the hit spread
 - Distribution does not describe the data (looks like)
- GoF measures:
 - Residuals: approximately 0
 - Covariance:

On average: 42.01% error Diag. elements: 27.57% error Off-Diag. elements: 71.98% error

• NN mixing test: $p \approx 0$

0.54 Nearest Neighbour mixing GoF results Roman Urmanov

0.56 0.58 т о.6

0.06

0.04 0.02 0.48 0.5

• Goal - transform a Normal distribution into a finite support one

- Goal transform a Normal distribution into a finite support one
- We want to leave variables correlated

- Goal transform a Normal distribution into a finite support one
- We want to leave variables correlated
- Copula multivariate distribution with uniform marginals

- Goal transform a Normal distribution into a finite support one
- We want to leave variables correlated
- Copula multivariate distribution with uniform marginals
- Step 1: Apply a CDF transformation to the normal marginals

- Goal transform a Normal distribution into a finite support one
- We want to leave variables correlated
- Copula multivariate distribution with uniform marginals
- Step 1: Apply a CDF transformation to the normal marginals Result: Distribution with uniform marginals and non-trivial correlations

- Goal transform a Normal distribution into a finite support one
- We want to leave variables correlated
- Copula multivariate distribution with uniform marginals
- Step 1: Apply a CDF transformation to the normal marginals Result: Distribution with uniform marginals and non-trivial correlations
- Step 2: Apply a ICDF transformation to the uniform marginals

- Goal transform a Normal distribution into a finite support one
- · We want to leave variables correlated
- Copula multivariate distribution with uniform marginals
- Step 1: Apply a CDF transformation to the normal marginals Result: Distribution with uniform marginals and non-trivial correlations
- Step 2: Apply a ICDF transformation to the uniform marginals Result: Distribution with new marginals and non-trivial correlations

Copula-NF network performance

- Observations:
 - · Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters
 - *r* width is due to the hit spread

Copula-NF network performance

- Observations:
 - Predictions look reasonable
 - · The shapes are non-gaussian
 - Distributions exist outside the clusters
 - *r* width is due to the hit spread

- GoF measures:
 - Residuals: even smaller
 - Covariance:

On average: 34.05% error Diag. elements: 15.29% error Off-Diag. elements: 62.47% error

Copula-NF network performance

Ny, pix

- Observations:
 - Predictions look reasonable
 - The shapes are non-gaussian
 - Distributions exist outside the clusters
 - ullet *r* width is due to the hit spread
 - Distribution does not describe the data (looks like)
- GoF measures:
 - Residuals: even smaller
 - Covariance: On average: 34.05% error

Diag. elements: 15.29% error Off-Diag. elements: 62.47% error

• NN mixing test: $p \approx 0$

Nearest Neighbour mixing GoF results

One particle case

	GoF parameters					
Network	$L_2^{\mu_1}$, pix	Err. Cov., %	Err. Cov., diag, %	Err. Cov., off-diag, %		
ATLAS, MDN	0.0057	18.23	18.23	100		
LUXE NF	0.0075	18.89	16.88	8272		
LUXE, CNF	0.0044	12.37	11.44	2839		

Two particle case

	GoF parameters					
Network	$L_2^{\mu_1}$, pix	$L_2^{\mu_1}$, pix	Err. Cov., %	Err. Cov., diag, %	Err. Cov., off-diag, %	
ATLAS, MDN	0.0555	0.8125	90.46	89.43	100	
LUXE NF	0.0137	0.0207	42.01	27.57	71.98	
LUXE, CNF	0.0030	0.0072	34.05	15.29	62.47	

- The results are shown for the cluster shapes with >5k events
- The bold numbers are the results that are the most compatible with the statistical error
- In one-particle case the hit coordinates are uncorrelated
- In two-particle there's evidence of inter-hit correlations
- Correlations aside, the CNF network is, generally, the top performer