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2 particles — 4 correlated o Strong correlations between the y-components
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2 particles — 4 correlated o Step 1: Multivariate Gaussian model — N (u, 33)
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e We want to leave variables correlated
e Copula — multivariate distribution with uniform marginals

e Step 1: Apply a CDF transformation to the normal marginals
Result: Distribution with uniform marginals and non-trivial correlations
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@ Goal — transform a Normal distribution into a finite support one

o We want to leave variables correlated

e Copula — multivariate distribution with uniform marginals

e Step 1: Apply a CDF transformation to the normal marginals
Result: Distribution with uniform marginals and non-trivial correlations

o Step 2: Apply a ICDF transformation to the uniform marginals

Result: Distribution with new marginals and non-trivial correlations
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Modeling the hits

2 particles — 4 correlated o Step 1: Multivariate Gaussian model — N (u, 33)
random
(%] variables

@ Step 2: Condition u, 3 on 6 — Neural Network

@ Step 3: Look at the hit distribution — need something
more expressive (Normalizing Flow)

e Step 4: Hit distribution is defined on a
N finite support — transform the base
distribution (Copulas)

C e oo s | 0 (lz| — %) cos”(z)
z, (n) Y| T
(110, 516) Copula e -
= e\ Yy :
o Y2
—log L(W,b,w) -

= —logP (z|W, b, w) — min

New approach to the clustering problem in pixel detectors, in a framework of periment Roman Urmanov 14/18



pula-NF network performance

4

Ny, pix
Ny, pix

e Observations:
e Predictions look reasonable .
e The shapes are non-gaussian E

e Distributions exist outside
the clusters 1

e 7 width is due to the hit spread

2 -1 0 1 2 3 4 2 0 1 2 3 4 5 6
Nx, pix Nx, pix

Example clusters

5

Ny, pix
Ny, pix

4 5 3 4
Nx, pix Nx, pix
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pula-NF network performance

6 4

® Observations: H . . :
5 Covarﬁan%le is calculated
L. r the sha 8
e Predictions look reasonable Lo shapes,
. 2
e The shapes are non-gaussian E
e Distributions exist outside : !
the clusters \ .
. . . 0
e 7 width is due to the hit spread Weighted average over all ,
- shapes to get a test statistics
2 -1 0 1 2 N 4 2 -1 0 1 2 3 4 5N 6
ik i, pix
Example clusters
o GoF measures: e 0 T

Moanx 0002043 Moan . -0.0004843

o/ Mesny -0002606 Moany 00006334

e Residuals: even smaller 2

SiDevx 02048 Subevx 02538

ot Vest meant P

Yo Voot moart PX

S9Devy 03623

e Covariance: 1
On average: 34.05% error
Diag. elements: 15.29% error
Off-Diag. elements: 62.47% error

Subevy 03738

2 1 2 3
XnuXost moans PIX XniXost, mears PIX
Hit residuals
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pula-NF network performance

6

Ny, pix

@ Observations:

Ny, pix

s Covariance is calculated

. . 3
e Predictions look reasonable over the shapes

4

e The shapes are non-gaussian E

e Distributions exist outside
the clusters 1

0

e 7 width is due to the hit spread Weighted average over all .

. . - _shapes to get a test statistics
e Distribution does not describe
-2

. 2 2
the data (looks like) 2 0t 28 e S R Y 4
Example clusters

o GoF measures: $ 200
S 0.22 Mean 05025
o Residuals: even smaller 02
0.18,
e Covariance: 016
On average: 34.05% error ot
Diag. elements: 15.29% error °;2‘
Off-Diag. elements: 62.47% error 008
o . 0.06
o NN mixing test: p ~ 0 ot
0.02

05 052 058 _ ok

T.au.

Nearest Nelghbour mlxmg GoF results
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Network performance comparison

One particle case

GoF parameters
Network L4, pix | Err. Cov.,% | Er Cov,diag,% | Err. Cov., off-diag, %
ATLAS, MDN 0.0057 18.23 18.23 100
LUXE NF 0.0075 18.89 16.88 8272
LUXE, CNF 0.0044 12.37 11.44 2839

Two particle case

GoF parameters
Network Ly, pix | Ly, pix | Err. Cov.,% | Err. Cov., diag, % | Err. Cov., off-diag, %
ATLAS, MDN 0.0555 0.8125 90.46 89.43 100
LUXE NF 0.0137 0.0207 42.01 27.57 71.98
LUXE, CNF 0.0030 0.0072 34.05 15.29 62.47

® The results are shown for the cluster shapes with >5k events

o The bold numbers are the results that are the most compatible with the statistical error
@ In one-particle case the hit coordinates are uncorrelated

o In two-particle there’s evidence of inter-hit correlations

e Correlations aside, the CNF network is, generally, the top performer

proach to the clu ing problem in

Roman Urmanov 18/18



