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From Noam Tal Hod, WIS 2

Fast simulation strategy
๏ Disable the dump and replace all its “output” by 

source-like particles -> computation will be faster 
by at least 1 order of magnitude. 
★At the tracker last layer

★100% of the neutron come from dump

★>10% of the photons come from dump

★~1% of the electrons and positrons from the 

dump 

๏ Look at the dummy volume (sampling plane) 

located just outside of the surface of the dump 

๏ plot  (  and ) or , , ,…  

๏ Here r is just  , position parameter. 
๏ ,  is the polar angle and azimuthal angle 

of the momentum  representative of 
direction of the particle. 

๏  is position azimuthal angle,  
and t is time. 

๏ Later: generate from the sampling plane  
according to these plots 
★ Use Generative Adversarial Network.

dN
dE

dN
dt

d2N
dEdt

d2N
drdθp

d2N
dϕpdϕpos

x2 + y2

θp ϕp
→

ϕpos

π
−

θ

−z

(x, y) +y

ϕ

⃗p

+x

•dump center

Surface where particles 
are recorded

Displace the production to 
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• If dump is along z-axis, then r and 
 are symmetric.


•  In actual LUXE geometry, there is 
a shift - r and  are asymmetric 

there. 
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Collaboration meeting slides

https://indico.desy.de/event/35797/contributions/128572/attachments/76856/99190/FastSimDumpParametrization_September12_2022_LUXE_CollaborationMeeting.pdf


Schematic diagram of the dump in the LUXE geometry
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★This geometry has only dump, 
the sampling surface and the test 
surfaces

★No detector planes.

Not to scale

Detector position: 
illustration purpose, not 
in the Geant4 geometry 

used in this talk.

76 mm {



Generative Adversarial Network 
(GAN)
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Generative Adversarial Network architecture
Steps to achieve our goal:

• Step 1: Quantile transformation: This is done to “Gaussianize” the Geant4 
dump distributions. 


• Each variable distribution has its own quantile transformation. 


• This is to smoothen sharp features in distributions, making it easier for 
the network to learn. 
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Quantile transformation

r [mm] Transformed r

Plots 
prepared by 

Alon Levi



Generative Adversarial Network architecture
Steps to achieve our goal:

• Step 2: Generator: tries to generate meaningful distributions from random noise.


• Consists of 4 hidden layers, LeakyReLU as the activation function. 


• Batch Normalization in each layer.


• Step 3: Discriminator: given the original distribution, it tells us how good the generation in 
Step 2 was. 


• Consists of 4 hidden layers, LeakyReLU as the activation function. 


• Instance Normalization in each layer.


• Step 4: the Loss function: 
 —> Wasserstein distance


• Step 5: Inverse quantile transformation to get physical distribution.

ℒ(pr, p(z)) = maxw∈W,θ∈Θ [𝔼x∼pr
[ fw(x)] − 𝔼x∼p(z)[ fw(gθ(z))]]
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Expectation value from the 
original distribution

Expectation value from the 
generated distribution
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neutron at 
sampling 
surface

Plots prepared by Alon Levi



All variables 
correlation 
plots: From 
Geant4 
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Neutron 
distributions

Plots prepared by Alon Levi



All variables 
correlation 
plots: From 
GAN 
distributions 
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Neutron 
distributions

Plots prepared by Alon Levi



Comparison with original 
(Geant4) distributions
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Plot labels:

• In this talk there will be two types of plots compared:


1. FullSim - Distributions from full Geant4 processing of the dump


2. FastSim - Geant4 processing where dump is replaced by particles 
following GAN neural network.


(i) Plots made at test surfaces.
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Neutron at test surface 1: r at very low value
(Looking at the shape of the distribution)
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With scale factor on the sampling plot, FastSim has an ad-hoc 
weight to match the FullSim

FastSim r matches 
with FullSim after 
the application of 
the scale factor

The distance of scintillator screen 
from the beam pipe is ~76 mm.

FastSim was 
generated from 2D 
distributions using 
ROOT::TH2D::GetR

andom2()

Shown at the July 10 SAS meeting
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FastSim generated by GAN, no ad-hoc weight applied

The distance of scintillator screen 
from the beam pipe is ~76 mm.

FastSim r matches 
with FullSim 

without any ad-hoc 
weight, natural 

distribution from 
GAN

FastSim from GAN, 
considering all 

correlations

https://indico.desy.de/event/40319/contributions/148061/attachments/83181/109775/FastSimParametrization_WeightedPlots_July10_2023.pdf
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Neutron at test surface 2: r at very low value
(Looking at the shape of the distribution)

2−10

En
tri

es FullSim

FastSim

neutron

z=4125 mm

0 50 100 150 200 250 300 350 400 450 500
 r [mm]

0
0.5

1
1.5

2

Fa
st

Si
m

Fu
llS

im
1 2π

r
dN dr

/b
in

W
id

th

With scale factor on the sampling plot, FastSim has an ad-
hoc weight to match the FullSim

FastSim r matches 
with FullSim after 
the application of 
the scale factor

The distance of tracker inner layer 
from the beam pipe is ~52 mm.
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FastSim was 
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FastSim from GAN, 
considering all 
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https://indico.desy.de/event/40319/contributions/148061/attachments/83181/109775/FastSimParametrization_WeightedPlots_July10_2023.pdf


Other distributions from FastSim 
(GAN)
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★Distributions are looked at z=5450.25mm.

★FullSim and FastSim distributions are matching quite 

well. 
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A few 1D distributions between FastSim (GAN) and FullSim: neutron at the test surface 1



A few 1D distributions between FastSim (GAN) and FullSim: neutron at the test surface 2
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★Distributions are looked at z=4125mm.

★FullSim and FastSim distributions are matching quite 

well. 
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Summary and Outlook



Summary and next steps:
• Mis-modeling in very backward particles 
• The problem is being solved by using Generative Adversarial Network (GAN). 


• Neutrons: 

• GAN FastSim sample gives similar distribution shapes of neutrons as FullSim in test 

surface 1 and test surface 2.


• Looking into GANs 


• More natural to parameterize the correlations.


• Consider all variable correlations unlike 2D plots which take only 2 variable 
correlation at a time.


• The result is not perfect (yet), but trends going in the right direction in mimicking the 
FullSim distribution.


• Worked only with neutron, but photon distributions will be looked at next.
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Thank you!
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Baseline distribution plots for LUXE geometry 
at the sampling surface (z=6621.91mm)

★Plots used for sampling. 
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Baseline distributions from FullSim in LUXE: neutron at sampling surface

 vs ϕpos ϕp

 vs rUpθp

 vs rDnθp

E vs t

y vs x

★For E vs t plot of neutron, we only 
go up to 100 eV of neutron.

★Neutron less energetic than 

that are not interesting.



Scale factor:
• Neutron and photon need different scale factor.


• Played with many different values and checked the FastSim distributions.


• Settled with scale factor depending only on :θp
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