

Search for vector dark matter

in microwave cavities with Rydberg atoms

Jordan Gué

In collaboration with A. Hees, J. Lodewyck, R. Le Targat and P. Wolf

Based on JG et al. Phys. Rev. D 108 035042 (2023)

COSMIC WISPers, DESY February 1st 2024

Classes of Dark Matter

From US cosmic vision : new idea for Dark Matter 2017, Arxiv:1707:04951

Ultra Light Dark Matter (ULDM) models

 \rightarrow ULDM with $mc^2 < 10 \ eV$ must be <u>bosonic</u> (Pauli exclusion principle)

- Various bosonic ULDM candidates
- Scalar fields (Dilatons,...)
- Pseudo-scalar fields (Axions,...)
- Vector fields (Dark photons,...)

• When $mc^2 \ll eV \rightarrow n/n_k \gg 1 \rightarrow a$ generic vector field $\vec{\phi}$ can be treated **classically**, i.e as oscillating solution of the Klein Gordon equation in FRLW expanding universe,

$$\vec{\phi} = \vec{\phi}_0 \cos(\omega_{DM} t) \qquad \qquad \hbar \omega_{DM} = m_{DM} c^2 \text{ in DM rest frame}$$

 $\propto \sqrt{\rho_{DM}}$, local DM energy density

Dark Photon (DP) phenomenology

DP can couple to matter through B-L current \rightarrow leads to violation of UFF *P. Fayet, Phys. Rev. D* 99 (2019)

Here, we are interested in its coupling with electromagnetism

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + j^{\mu}A_{\mu} - \frac{1}{4}\phi^{\mu\nu}\phi_{\mu\nu} - \frac{1}{2}m^{2}\phi_{\mu}\phi^{\mu} - \underbrace{\frac{1}{2}F^{\mu\nu}\phi_{\mu\nu}}_{\text{DP field}} \underbrace{\frac{1}{2}F^{\mu\nu}\phi_{\mu\nu}}_{\text{B. Holdom, Phys. Lett. 166B, 196 (1986)}}$$

The photon-DP mixing generates a standard electric field filling the whole space

$$\vec{E}_{DP} \approx -\chi \omega \vec{\phi}_0 \cos(\omega_{DM} t) = \vec{\phi}$$

which is the observable we aim at detecting!

Kinetic mixing coupling

Resonant cavity to amplify \vec{E}_{DP}

Use of metallic plate to create classical propagating EM field by boundary conditions

In JG et al. PRD (2023), we propose a new way of detecting \vec{E}_{DP} using microwave cavity and atoms whose signal is $\propto \chi$

The experiment : Setup using microwave signal

We work in 1D with a microwave cavity. $X_{DM,||} \propto \chi \sqrt{\rho_{DM}} \cos(\omega_{DM} t) \stackrel{\vec{E}_{DM}}{=} \int_{x=-\frac{L}{2}}^{\vec{E}_{DM}} \stackrel{\vec{E}_{DM}}{=} \int_{x=\frac{L}{2}}^{\vec{E}_{DM}} \stackrel{\vec{E}_{DM}}{=} \int_{x=\frac{L}{2}}^{\vec{E}$

The experiment : Setup using microwave signal

Oscillating too fast and/or amplitude too small

The experiment : Setup using microwave signal

Oscillating too fast and/or amplitude too small

- \rightarrow Slowly oscillating signal $\propto \chi$
- \rightarrow We are sensitive to ω_{DM} such that $\Delta \omega < \pi f_s$
- \rightarrow We use the applied field to amplify the weak DM field (through \vec{X}_a)

The experiment : Detection using Rydberg atoms

Best way of measuring the square of the electric field strength is through quadratic **Stark effect** $\Delta \nu = \frac{1}{2h} \Delta \alpha \langle E \rangle^2$

 \rightarrow Measurement of transition frequency of an atom and look for $v(t) = v_0 + \Delta v \cos(\Delta \omega t + \phi_a)$

With **Rydberg atoms** :

- -High accuracy on $\Delta \nu$ from $\langle E \rangle^2$ -Large polarizability $\Delta \alpha$ -Good resolution on $\langle E \rangle^2$
 - \rightarrow Better sensitivity on $\langle E \rangle^2$

-Short lifetime ($\sim \mu$ s) -Non-destructive measurement

 \rightarrow High sampling frequency possible

1st source of noise : Statistical noise

\rightarrow Measurement uncertainty on the frequency shift of atoms...

... induces a measurement uncertainty on the electric field squared

 $S_{\Delta\nu} = \left(\frac{\Delta \alpha}{2h}\right)^2 S_{E^2}$ Electric field squared noise PSD

2nd source of noise : Systematic effect

→ Amplitude fluctuation of the applied field, characterized by the RIN of the signal generator

The main amplitude fluctuation (mimicking a signal at $\Delta \omega$) is at frequency $\omega_0 = \Delta \omega$. Then

$$X_a \to X_a + \Delta X_a(\Delta \omega) \cos(\Delta \omega t + \phi_0)$$

With realistic experimental parameters, ~ 5 days of data-taking could constrain the black region

Conclusion

- DP is a serious DM candidate \rightarrow numerous lab experiments trying to detect it.
- Proposal of a new kind of experiment looking for DP using atoms inside a microwave cavity. As a resonant device, it acts as a narrow band DM detector.
- With the current technology in quantum optics, competitive constraints on the coupling constant χ compared to other experiments.

• Experiment could be feasible in the near future using Sr or Hg clocks e.g @SYRTE

Thank you for your attention !

I am looking for postdoctoral position starting next year in COSMIC WISPers working group related areas (direct dark matter detection with quantum sensors) so please, let me know if you propose opportunities !

This work was supported by the Programme National GRAM of CNRS/INSU with INP and IN2P3 co-funded by CNES.

Back-up : propagation of DP field in lab

• Free Klein-Gordon equation of each DP space component A^{i}

$$\ddot{\phi}^i + 3H\dot{\phi}^i + \omega^2\phi^i \approx 0$$

whose solution is oscillatory when $\omega \gg H$

• Treating DP field as a classical **massive** field, we have (in its rest frame) $\frac{mc^2}{\hbar}$

$$\vec{\phi} = \vec{\phi}_0 \cos(\omega t) \qquad \omega = -\frac{1}{2}$$

Now, considering the DP field makes the whole DM local density, it passes through lab with \vec{v}_{DM}

 $\vec{k} \Rightarrow \frac{m\vec{v}_{DM}}{\hbar} \rightarrow \lambda \gg L$, size of cavity experiment considered $\mathcal{O}(10^{-6} \text{ eV})$ $\mathcal{O}(300 \text{ m})$

\rightarrow propagation neglected in the lab frame

Back-up : Experimental parameters

TABLE I: Assumed	experimental	parameters
------------------	--------------	------------

Parameters	Numerical values	
Quality factor Q [47]	10^{4}	
Mirrors reflectivity r	$\approx 1 - 2 \times 10^{-4}$	J. Guena et al., IEEE TUFFC 59, 391 (2012)
Cavity length L	$7.5~{ m cm}$	
Injected field strength $X_a(\omega)$	$[18.1, 1.70 \times 10^5] \text{ V/m}$	
Sampling frequency f_s	$10^2 ; 10^3 \text{ Hz}$	Bridge et al. Opt. Everage 24 , 2201 (2010)
Individual measurement time $T_{\rm obs}$	60 s	Briage et al. Opt. Express 24, 2281 (2016)
Range of $f_a = \omega_a/2\pi$	[0.5, 20.5] GHz	
Range of $\Delta \omega$	$[2\pi/T_{\rm obs}, \pi f_s] \text{ rad/s}$	
Statistical noise PSD S_{E^2}	$10^{-4}/f_s \ (V/m)^4/Hz$	Millen et al. Journal of Physics 44, 184001 (2011)
Systematic effect PSD $S_{\text{RIN}}(\omega)$	$10^{-13}/\omega$; $10^{-15}/\omega$	Rubiola, Arxiv:physics/0512082 (2005)

Back-up : modest/optimistic sensitivities

