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Classes of Dark Matter

From US cosmic vision : new idea for Dark Matter 2017, Arxiv:1707:04951

ULDM mass interval
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Ultra Light Dark Matter (ULDM) models
𝑛
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àULDM with 𝑚𝑐! < 10 𝑒𝑉 must be bosonic (Pauli exclusion principle)
• Various bosonic ULDM candidates

• When 𝒎𝒄𝟐 ≪ 𝒆𝑽 → 𝑛/𝑛# ≫ 1 → a generic vector field 𝜙 can be treated classically, i.e as 
oscillating solution of the Klein Gordon equation in FRLW expanding universe, 

~0.4 𝐺𝑒𝑉/𝑐𝑚!

~10"!𝑐

< 10 𝑒𝑉 Inspired from P. Tourrenc et al, Arxiv:quantum-ph/0407187, 2004

Ø Scalar fields (Dilatons,...)
Ø Pseudo-scalar fields (Axions,…)
Ø Vector fields (Dark photons,...)

Occupation number 
in phase space
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𝝓 = 𝝓𝟎 𝐜𝐨𝐬 𝝎𝑫𝑴𝒕
ℏ𝜔#$ = 𝑚#$𝑐% in DM rest frame

∝ 𝜌#$, local DM energy density



Dark Photon (DP) phenomenology
DP can couple to matter through B-L current à leads to violation of UFF

Here, we are interested in its coupling with electromagnetism
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The photon-DP mixing generates a standard electric field filling the whole space

𝐸89 ≈ −𝜒𝜔𝜙: cos 𝜔8;𝑡

which is the observable we aim at detecting! 

DP strength tensor

Kinetic mixing coupling

DP field
B. Holdom, Phys. Lett. 166B, 196 (1986)
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≡ 𝜙

P. Fayet, Phys. Rev. D 99 (2019)



Use of metallic plate to create classical propagating EM field by boundary conditions

In , we propose a new way of detecting 𝐸89 using microwave cavity and atoms
whose signal is ∝ 𝝌

Resonant cavity to amplify 𝐸+,
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At GHz freq., mainly 2 types experiments to detect 𝐸89

1) Cavities (haloscopes) 
àDetection of EM power inside the cavity ∝ 𝝌𝟐

2) Dish antennas 
à Detection of EM power focused by curvature of dish ∝ 𝝌𝟐

D. Horns et al., JCAP 04 (2013)

P. Arias et al., JCAP 06 (2012)

JG et al. PRD (2023)



We work in 1D with a microwave cavity.

The experiment : Setup using microwave signal 
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𝑋#$,|| ∝ 𝜒 𝜌#$ cos 𝜔#$𝑡



The experiment : Setup using microwave signal 

à Apply an external field 𝐸D ∝ 𝑋D cos(𝜔D𝑡 + 𝜙D)…

|𝑬𝑻|𝟐 ∝ 𝑿𝒂𝑿𝑫𝑴 [𝐜𝐨𝒔 ∆𝝎𝒕 + 𝝓𝒂 + 𝐜𝐨𝐬 𝜮𝝎𝒕 + 𝝓𝒂 ]
+𝑿𝑫𝑴𝟐 𝐜𝐨𝐬(𝟐𝝎𝑫𝑴𝒕) + 𝑿𝒂𝟐 𝐜𝐨𝐬(𝟐𝝎𝒂𝒕 + 𝝓𝒂)

Oscillating too fast and/or amplitude too small

✓𝜔! − 𝜔"#

We work in 1D with a microwave cavity.

…and look at the total E field squared 

JG et al. PRD 108 035042 (2023)
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The experiment : Setup using microwave signal 
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✓𝜔! − 𝜔"#

We work in 1D with a microwave cavity.

…and look at the total E field squared 

JG et al. PRD 108 035042 (2023)

à Slowly oscillating signal ∝ 𝝌
à We are sensitive to 𝝎𝑫𝑴 such that ∆𝝎 < 𝝅𝒇𝒔 
à We use the applied field to amplify the weak DM field (through 𝑿𝒂)

𝑋#$,|| ∝ 𝜒 𝜌#$ cos 𝜔#$𝑡
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Best way of measuring the square of the electric field strength is through quadratic Stark effect

𝜟𝝂 =
𝟏
𝟐𝒉

∆𝜶 𝑬 𝟐

àMeasurement of transition frequency of an atom and look for 𝜈 𝑡 = 𝜈: + 𝜟𝝂𝐜𝐨𝐬(𝜟𝝎𝒕 + 𝝓𝒂)

The experiment : Detection using Rydberg atoms

à Better sensitivity on 𝑬 𝟐
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With Rydberg atoms : 
-High accuracy on 𝜟𝝂 from 𝑬 𝟐

-Large polarizability ∆𝜶
-Good resolution on 𝑬 𝟐

à High sampling frequency possible

-Short lifetime (~𝜇s)
-Non-destructive measurement



1) Apply electric field with frequency 𝜔D for 𝑇GHI
à scan DM signals with !J

K!"#
< |Δ𝜔| < JL#

!

Experimental methodology

N times

𝜔 (𝐻𝑧)

𝜔(
(*)

Allowed interval for 𝜔"# 

Δ𝜔 = 𝜋𝑓$/2Δ𝜔 = 𝜋𝑓$/2

2) Shift applied frequency by 𝜋𝑓I for 𝑇GHI
à scan new DM signals with !J

K!"#
< |Δ𝜔| < JL#

!

à Large window of DM frequencies scanable (= 𝑵𝒇𝒔)

𝜔 (𝐻𝑧)

𝜔(
(%)

New allowed interval for 𝜔"# 

Δ𝜔 = 𝜋𝑓$/2Δ𝜔 = 𝜋𝑓$/2

𝜔(
(*)

Shift of 𝜔D
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Rough estimation of the experiment sensitivity
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1st source of noise : Statistical noise

àMeasurement uncertainty on the frequency shift of atoms…

𝜎∆R! =
𝑆∆R𝑓I
2

…induces a measurement uncertainty on the electric field squared

𝑆∆R =
∆𝛼
2ℎ

!
𝑆S$

Electric field squared noise PSD 

Frequency shift noise PSD 

Frequency shift variance 



2nd source of noise : Systematic effect

àAmplitude fluctuation of the applied field, characterized by the RIN of the signal generator

𝑋D → 𝑋D 1 + a𝑑𝜔:
Δ𝑋D(𝜔:)
𝑋D

cos(𝜔:𝑡 + 𝜙:)

The RIN PSD 𝑆TUV(𝜔:) is given by 

Δ𝑋D(𝜔:)
𝑋D

=
𝑆TUV(𝜔:)
2𝑇GHI

The main amplitude fluctuation (mimicking a signal at Δ𝜔) is at frequency 𝜔: = Δ𝜔. Then

𝑋D → 𝑋D + Δ𝑋D(Δ𝜔) cos(Δ𝜔𝑡 + 𝜙:)

Rough estimation of the experiment sensitivity
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𝑆!"# 𝜔 =
𝑃!"#
𝜔

(Flicker type noise)



Rough estimation of the experiment sensitivity
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(From cajohare.github.io/AxionLimits/)

https://cajohare.github.io/AxionLimits/


Rough estimation of the experiment sensitivity
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With realistic experimental parameters, ~5 days of data-taking could constrain the black region

(From cajohare.github.io/AxionLimits/)

JG et al. PRD 108 035042 (2023)

https://cajohare.github.io/AxionLimits/


• DP is a serious DM candidate à numerous lab experiments trying to detect it.
• Proposal of a new kind of experiment looking for DP using atoms inside a microwave cavity. 

As a resonant device, it acts as a narrow band DM detector.
• With the current technology in quantum optics, competitive constraints on the coupling 

constant 𝝌 compared to other experiments.

• Experiment could be feasible in the near future using Sr or Hg clocks e.g @SYRTE

Conclusion
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JG et al. PRD 108 035042 (2023)



Thank you for your attention !

JG et al. Phys. Rev. D 108 035042  (2023)

This work was supported by the Programme National GRAM of CNRS/INSU 
with INP and IN2P3 co-funded by CNES.

I am looking for postdoctoral position starting next year in COSMIC WISPers working 
group related areas (direct dark matter detection with quantum sensors) 

so please, let me know if you propose opportunities !



Back-up : propagation of DP field in lab
• Free Klein-Gordon equation of each DP space component 𝐴W

�̈�W + 3𝐻�̇�W +𝜔!𝜙W ≈ 0
whose solution is oscillatory when 𝜔 ≫ 𝐻
• Treating DP field as a classical massive field, we have (in its rest frame)

𝜙 = 𝜙: cos(𝜔𝑡)
Now, considering the DP field makes the whole DM local density, it passes through lab with �⃗�8;

𝑘 = XY%&
ℏ

→ λ ≫ 𝐿, size of cavity experiment considered

à propagation neglected in the lab frame

𝜔 =
𝑚𝑐%

ℏ

𝒪(10", eV)

𝒪(10"!c)

𝒪(300 m)



Back-up : Experimental parameters

J. Guena et al., IEEE TUFFC 59, 391 (2012)
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Millen et al.  Journal of Physics 44, 184001 (2011)



Back-up : modest/optimistic sensitivities


