Small Kinetic Mixing in String Theory

Ruben Kuespert

based on arXiv:2311.10817 with A. Hebecker & J. Jaeckel

Working Group Meeting of COST Action COSMIC WISPers 1.2.2024

Small Kinetic Mixing in String Theory

< 回 > < 三 > < 三 >

Outline

Punshline: Stringy brane world scenarios can realise small kinetic mixing

- 1. Motivation & Introduction
- 2. String Theory Perspective
- 3. D3-D3-Brane Kinetic Mixing
- 4. Summary & Outlook

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

1. Motivation & Introduction

- 2. String Theory Perspective
- 3. D3-D3-Brane Kinetic Mixing
- 4. Summary & Outlook

3

< □ > < □ > < □ > < □ > < □ > < □ >

Motivation & Introduction

- · Gauge kinetic mixing (KM) represents one "portal" to a dark sector
- The KM operator mixes two different U(1) gauge theories (say $U(1)_A$ and $U(1)_B$) [Okun, 1982, Holdom, 1986]

$$\mathcal{L} \supset -\frac{\chi_{AB}}{2} F^{\mu\nu}_{(A)} F^{(B)}_{\mu\nu}$$

- Hidden photon could be massive and represent DM or mediate interaction to DM candidate
- KM is intensively researched and has to satisfy strong bounds:

$$\chi_{AB} < 10^{-17} - 10^{-5}$$
 see e.g. [FIPs Report 2022]

Motivation & Introduction - II

• χ_{AB} can be generated by a heavy particle Φ running in a loop

 $A^{(\mathrm{A})}_{\mu}$: visible photon, $A^{(\mathrm{B})}_{\mu}$: hidden photon

- Is there a UV motivation for these states?
- Pure loop suppression is insufficient

 \Rightarrow Ideally, a (top down) mechanism should account for $\chi \ll 1$

Outline

1. Motivation & Introduction

- 2. String Theory Perspective
- 3. D3-D3-Brane Kinetic Mixing
- 4. Summary & Outlook

э

< □ > < □ > < □ > < □ > < □ > < □ >

Basics of String Phenomenology - Bulk Theory

- Focus of this talk: type IIB superstring
- At low energies IIB is described by a 10d sugra theory, "bulk theory"

$$S_{IIB} \sim \int_{\mathcal{M}^{10}} e^{-2\phi} \left(R + (\partial\phi)^2 + |\mathsf{d}B_2|^2 \right) - \sum_{p=0,2,4} |\mathsf{d}C_p|^2 + C_4 \wedge \mathsf{d}B_2 \wedge \mathsf{d}C_2$$

• 6 extra dimensions are Kaluza-Klein (KK) compactified

Basics of String Phenomenology - Bulk Theory - II

- Every 10d field is replaced by tower of ∞-many KK-modes
- Compactified 4d theory is dual to the 10d theory \Rightarrow BUT turn to 4d EFT of the massless KK-modes, $m_{KK} \sim R^{-1}$
- Geometry of \mathcal{X}^6 is encoded in 4d massless scalar moduli fields \Rightarrow Require "moduli stabilisation":
 - ► Flux-compactification, background of dB₂, dC₂ [Giddings,Kachru,Polchinski 2002] then:
 - KKLT-proposal [Kachru, Kallosh, Linde, Trivedi 2003]
 - Large Volume Scenario [Balasubramanian, Conlon, Quevedo 2005]

イロト イヨト イヨト イヨト

Basics of String Phenomenology - D-Branes

• D-branes are hypersurfaces where open strings can end

- D-brane are independent extended objects of string theory
- D-branes carry gauge theories from open string excitations

9/21

Basics of String Phenomenology - D-Branes II

• single D-brane: U(1) theory, stack of N D-branes: U(N) theory

- D-branes also interact with closed string modes of bulk theory
- D-branes can be taken into account by adding a brane action!

$$S_{Dp} \sim \int_{D_p} e^{-\Phi} \sqrt{-\det\left(g_{ab} - B_{ab} + F_{ab}\right)} + \exp\left(F_2 - B_2\right) \wedge \sum_q C_q$$

10/21

[Dienes et al., 1997] [Abel and Schofield, 2004] [Abel et al., 2008]

COSMIC WISPers, 1.2.2024 11 / 21

< □ > < □ > < □ > < □ > < □ > < □ >

- Gauge theories live on D-branes \curvearrowright separated surfaces in 10d

4 2 5 4 2 5

< A IN

- Gauge theories live on D-branes \curvearrowright separated surfaces in 10d

• To communicate D-branes need to exchange bulk fields ⇔ ?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Gauge theories live on D-branes \curvearrowright separated surfaces in 10d

- To communicate D-branes need to exchange bulk fields ⇔ ?
- We can start top down in 10d supergravity + D-branes
 - 1. compactify to 4d, integrate out heavy KK modes
 - 2. compute exchange diagram via Greens functions in 10d
- Suppression from propagation over large distance

11/21

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

- 1. Motivation & Introduction
- 2. String Theory Perspective
- 3. D3-D3-Brane Kinetic Mixing
- 4. Summary & Outlook

3

< □ > < □ > < □ > < □ > < □ > < □ >

Extracting Kinetic Mixing

• Simple setup: $2 \times D3$ -branes \Rightarrow What are the coupling terms?

$$S_{\text{DBI}}^{(i)} \supset -\int_{\mathcal{M}^{1,3}} d^4 x \, \frac{1}{4g_{\text{s}}} \left(F_{\mu\nu}^{(i)} F_{(i)}^{\mu\nu} + 2F_{\mu\nu}^{(i)} B^{\mu\nu} + B_{\mu\nu} B^{\mu\nu} \right) \\ S_{\text{CS}}^{(i)} \supset \int_{\mathcal{M}^{1,3}} d^4 x \left[\frac{1}{4} \left(F^{(i)} + B \right)_{\mu\nu} \, C_{\rho\sigma} + \frac{C_0}{2 \cdot 4} \left(F^{(i)} + B \right)_{\mu\nu\rho\sigma}^2 \right] \epsilon^{\mu\nu\rho\sigma}$$

COSMIC WISPers, 1.2.2024 13 / 21

3

< □ > < □ > < □ > < □ > < □ > < □ >

Extracting Kinetic Mixing

• Simple setup: $2 \times D3$ -branes \Rightarrow What are the coupling terms?

$$\begin{split} S_{\text{DBI}}^{(i)} &\supset -\int_{\mathcal{M}^{1,3}} \, \mathrm{d}^{4}x \, \frac{1}{4g_{\text{s}}} \left(F_{\mu\nu}^{(i)} F_{(i)}^{\mu\nu} + 2F_{\mu\nu}^{(i)} B^{\mu\nu} + B_{\mu\nu} B^{\mu\nu} \right) \\ S_{\text{CS}}^{(i)} &\supset \int_{\mathcal{M}^{1,3}} \, \mathrm{d}^{4}x \left[\frac{1}{4} \left(F^{(i)} + B \right)_{\mu\nu} \, C_{\rho\sigma} + \frac{C_{0}}{2 \cdot 4} \left(F^{(i)} + B \right)_{\mu\nu\rho\sigma}^{2} \right] \epsilon^{\mu\nu\rho\sigma} \end{split}$$

- Need to focus on $C_{\mu\nu}$ and $B_{\mu\nu}$!
- Have to compute diagrams like:

Extracting Kinetic Mixing - II

• To compute diagrams we need the propagators Δ_B^{-1} and Δ_C^{-1}

$$S_{IIB} = -\frac{1}{2} \int_{\mathcal{M}_{10}} d^{10}x \left[B_{mn} (g_s^{-2} + C_0^2) \Box B^{mn} + C_{mn} \Box C^{mn} - B_{mn} 2C_0 \Box C^{mn} \right]$$

Hence the propagators are given by $(C_0 = 0)$

$$\Delta_B^{-1} = g_s^2 \Box^{-1}$$
, $\Delta_C^{-1} = \Box^{-1}$

Extracting Kinetic Mixing - II

- To compute diagrams we need the propagators Δ_B^{-1} and Δ_C^{-1}

$$S_{IIB} = -\frac{1}{2} \int_{\mathcal{M}_{10}} d^{10}x \left[B_{mn} (g_s^{-2} + C_0^2) \Box B^{mn} + C_{mn} \Box C^{mn} - B_{mn} 2C_0 \Box C^{mn} \right]$$

Hence the propagators are given by $(C_0 = 0)$

$$\Delta_B^{-1} = g_{\rm s}^2 \Box^{-1} \ , \quad \Delta_C^{-1} = \Box^{-1}$$

• This gives naive result for KM:

$$\begin{array}{l} B_{\mu\nu} \end{pmatrix} \left(\frac{1}{2g_{s}} F_{\mu\nu}^{(A)} \right) g_{s}^{2} \Box^{-1}(y_{A}, y_{B}) \left(\frac{1}{2g_{s}} F_{(B)}^{\mu\nu} \right) \\ C_{\mu\nu} \end{pmatrix} \left(\frac{\epsilon^{\mu\nu\alpha\beta}}{4} F_{\alpha\beta}^{(A)} \right) \Box^{-1}(y_{A}, y_{B}) \left(\frac{\epsilon^{\mu\nu}}{4} F_{\rho\sigma}^{(B)} \right) \end{array} \right\} \sum = F_{\mu\nu}^{(A)} \Box^{-1} F_{(B)}^{\mu\nu} \left(\frac{1}{4} - \frac{1}{4} \right) = 0$$

What should we expect?

- Full string theory diagram gives same result, but only calculable with very simple internal spaces [Dienes et al., 1997, Abel and Schofield, 2004]
- We didn't specify any internal space, so to find this result is very good for our EFT (good approximation) & interesting for pheno since we can expect small KM!
- BUT we used very crude simplifications!

 \Rightarrow What happens when all generalizations are taken into account?

• Also, have
$$SL(2,\mathbb{R})$$
 doublet $\begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}$, should take this into account.

COSMIC WISPers, 1.2.2024

15 / 21

• Include all terms of action:

$$S_{D3} = \int_{\mathcal{M}^{1,3}} d^4 x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & g_s^{-1} + C_0 \end{pmatrix} \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix} + \begin{pmatrix} -\tilde{F}_{\mu\nu} \\ g_s^{-1}F_{\mu\nu} + C_0\tilde{F}_{\mu\nu} \end{pmatrix}^T \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$
$$S_{IIB} = \int_{\mathcal{M}^{10}} d^{10} x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \begin{pmatrix} 1 & -C_0 \\ -C_0 & g_s^{-2} + C_0^2 \end{pmatrix} \Box \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$

COSMIC WISPers, 1.2.2024 16 / 21

э

A D N A B N A B N A B N

• Include all terms of action:

$$S_{D3} = \int_{\mathcal{M}^{1,3}} d^4 x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \hat{m} \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix} + \vec{J}^T \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$
$$S_{IIB} = \int_{\mathcal{M}^{10}} d^{10} x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \hat{M} \cap \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$

COSMIC WISPers, 1.2.2024 16 / 21

< □ > < 同 > < 回 > < 回 > < 回 >

э

• Include all terms of action:

$$S_{D3} = \int_{\mathcal{M}^{1,3}} d^4 x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \hat{m} \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix} + \vec{J}^T \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$
$$S_{IIB} = \int_{\mathcal{M}^{10}} d^{10} x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \hat{M}_{\Box} \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$

• Get a new vertex on the branes...

3

< □ > < 同 > < 回 > < 回 > < 回 >

• Include all terms of action:

$$S_{D3} = \int_{\mathcal{M}^{1,3}} d^4x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \hat{m} \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix} + \vec{J}^T \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$
$$S_{IIB} = \int_{\mathcal{M}^{10}} d^{10}x \begin{pmatrix} C_{\mu\nu} \\ B_{\mu\nu} \end{pmatrix}^T \hat{M}_{\Box} \begin{pmatrix} C^{\mu\nu} \\ B^{\mu\nu} \end{pmatrix}$$
• Get a new vertex on the branes...
$$\hat{m} = \begin{vmatrix} A & B \\ M & A \end{vmatrix} = \begin{vmatrix} A & B \\ M & A \end{vmatrix}$$
• ... a corrected propagator ... generalized sources ...
$$\Delta^{-1} = \hat{M}^{-1} \Box^{-1} , \qquad \vec{J} = \begin{pmatrix} -\tilde{F}_{\mu\nu} \\ g_{s}^{-1}F_{\mu\nu} + C_{0}\tilde{F}_{\mu\nu} \end{pmatrix}$$

Full Treatment - II

• ... and a bunch of new diagrams

- Sum of all diagrams yields again zero, to all orders of perturbation theory
- To show this it is crucial to exploit $SL(2,\mathbb{R})$ structure of the theory

Modifications to yield KM

- We assumed $g_s = \text{const.} \& C_0 = \text{const.}$
- This is only valid in flux compactifications, g_s and C_0 are actually dynamical moduli fields and get fixed by fluxes

Flux compactification \Leftrightarrow background for $\frac{\bar{H}_{\mu\nu\rho}}{\bar{F}_{\mu\nu\rho}} = \partial_{[\mu}\bar{B}_{\nu\rho]}}{\bar{F}_{\mu\nu\rho}}$

Modifications to yield KM

- We assumed $g_s = \text{const.} \& C_0 = \text{const.}$
- This is only valid in flux compactifications, g_s and C_0 are actually dynamical moduli fields and get fixed by fluxes

Flux compactification \Leftrightarrow background for $\vec{H}_{\mu\nu\rho} = \partial_{[\mu}\vec{B}_{\nu\rho]}$ $\vec{F}_{\mu\nu\rho} = \partial_{[\mu}\vec{C}_{\nu\rho]}$

- This leads to even more vertices, breaks $SL(2, \mathbb{R})$ and yields KM
- The leading diagram is

Estimates of KM

Computing diagrams and extracting KM yields for χ :

$$\chi = \int_{y',y''} \left(\frac{-1}{4!} \Delta_6^{-1}(y_A, y') \ F^i(y')_{[abc} \ \partial_{d]}^{(y')} \ \left[\Delta_6^{-1}(y', y'') \right] \right.$$
$$\times F^j(y'')^{abc} [\Delta_6^{-1}(y'', y_B)] \right) + (A \leftrightarrow B)$$

Parametrically χ scales with the volume \mathcal{V} of \mathcal{X} (in string units):

$$\chi \sim rac{1}{\mathcal{V}^{4/3}}$$

 \Rightarrow This is obviously constrained!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Estimates of KM

< 3 >

Outline

- 1. Motivation & Introduction
- 2. String Theory Perspective
- 3. D3-D3-Brane Kinetic Mixing
- 4. Summary & Outlook

3

< □ > < □ > < □ > < □ > < □ > < □ >

Summary & Outlook

- Considered only D3 branes \curvearrowright other brane scenarios also possible
- · Suppression due to long distance propagation and diluteness of flux
- Parametric estimate: $\chi \gtrsim 10^{-15}$
- Open issue with 4d sugra embedding
- Exact evaluation of formula on tori geometries might give insights about resolution

Summary & Outlook

- Considered only D3 branes \curvearrowright other brane scenarios also possible
- · Suppression due to long distance propagation and diluteness of flux
- Parametric estimate: $\chi \gtrsim 10^{-15}$
- Open issue with 4d sugra embedding
- Exact evaluation of formula on tori geometries might give insights about resolution

Thank you!

Backup - Small Gauge Couplings

Weak Gravity Conjecture: $g \ge \Lambda/M_{\text{Pl}}$

[Arkani-Hamed, Motl, Nicolis, Vafa 2007]

