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The CC problem, the landscape, and axions

The axion could serve an even grander purpose than solving the strong
CP problem via the PQ mechanism, including solving open problems in
cosmology: it could be the dark matter, the inflaton, and might play an
important role in solving the cosmological constant problem

Weinberg [’87] opened the door to an anthropic solution to the CC problem:
assuming δρ/ρ ∼ 10−5 in the early universe, he showed Λ ≲ 10−122M4

Pl

(provided Λ > 0)

A full solution would allow Λ to vary, and be ∼ uniformly distributed for
small values. The anthropic argument would then predict Λ ≈ Λobs.

The string theory landscape is a terrain where Λ varies [BP ’00, DD ’04],
with its vacua populated by first order phase transitions in eternal inflation

String theory axions could provide an anthropic solution to the CC problem
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The Kreuzer-Skarke axiverse

We studied axion potentials in a corner of the string landscape, namely type
IIB string theory compactified on (orientifolds of) CY 3-folds. The amount
of axions in the 4D EFT is equal to h1,1 ≡ N, which ranges from 1 to 491
in our ensemble. Our CYs are derived from the Kreuzer-Skarke database of
4D reflexive polytopes [1808.01282]
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Axion potentials in string theory

The axion potential is determined from geometric data of the CY via

V (θ) = eK

K abDaWDbW − 3|W |2



≈ −8π

V2



α

(q(α) · τ ) e−2πq(α)·τ cos

2πq(α) · θ + δα



Here

q(α): instanton “charges”, from E-D3 branes wrapping holomorphic
4-cycles of the CY

τ : saxions = volumes of the 4-cycles, τ i = (1/2)

Di

J ∧ J, large in
string units (ℓs = 1 here). Assumed to be stabilized

δ’s: phases coming from phases in W0,Aα ∈ C, chosen randomly, also
assumed |W0| ∼ |Aα| = O(1)
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In general determining the possible q(α) is difficult, but for particular CYs
(constructed as hypersurfaces in toric varieties) some are guaranteed to exist,
namely the charges associated with prime toric divisors (they are inherited
from the ambient variety). If the CY is furthermore “favorable”, there are
h1,1 + 4 of these. There may be others (“autochthonous divisors”) not
inherited from the ambient space; we will neglect them [2107.09064]

Approximation to “effective cone” E containing the charges that contribute:
non-negative integer linear combinations of the following generators
(themselves integer-valued)

p(a) =





1N

q(1)⊤

q(2)⊤

q(3)⊤

q(4)⊤




, q(α) =

N+4

a=1

n
(α)
a p(a) , n

(α)
a ∈ Z≥0
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In a large set of CYs (∼ 400, 000) derived from the Kreuzer-Skarke list, we
used CYTools [cy.tools, 2211.03823] to efficiently compute the τ and q(α)

Our question: how many (distinct) minima does the axion potential

V (θ) = −8π

V2

∞

α=1

(q(α) · τ ) e−2πq(α)·τ cos

2πq(α) · θ + δα



have in each realization? Is the structure rich enough to anthropically solve
the CC problem?
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Two toy examples
(1) Consider

V (θ) =
N

α=1

Λα cos

2πq(α) · θ + δα



for any {Λα, δα} and (full rank) matrix Q = (q(α))

Claim: this potential has a single distinct minimum

Argument: perform the (invertible) coordinate transformation Qθ = θ′, in
terms of which the potential reads

V (θ′) =
N

α=1

Λα cos

2πθ′α + δα


.

There is 1 minimum in the fundamental domain [0, 1)N
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(1.5) Consider
V (θ) = cos(2π · 10θ) + ε cos(2πθ)

with 0 < ε ≪ 1

Claim: this potential has 10 distinct minima

Argument: before adding the correction, there was a single distinct minimum
in the fundamental domain [0, 1/10). With the correction, the fundamental
domain is enlarged to [0, 1), and what used to be exact copies of minima
are now good approximations to new minima as long as we remain in [0, 1)
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(1.75) Consider

V (θ) = cos(2πθ) + ε cos(2π · 10θ)

with 0 < ε ≪ 1

Claim: this potential has 1 distinct minimum

Argument: the fundamental domain is [0, 1) both before and after adding
the correction. The small amplitude, larger frequency correction is not
sufficient to create new minima in [0, 1)
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(2) Consider

V (θ) =
N

α=1

Λα cos

2πq(α) · θ + δα


+

M

β=1

Λ̃β cos

2πq̃(β) · θ + δ̃β



for any {Λα, δα, δ̃β}, full rank Q = (q(α)), q̃(β) = O(q(α)) and Λα  Λ̃β

Claim: this potential has | detQ| minima

Argument: a basis for the fundamental domain of the leading piece are

the columns of Q−1. This parallellepiped has volume 1/| detQ|, which is
smaller than the volume of the full fundamental domain [0, 1)N by a factor
| detQ|. In the full potential there are exactly this many approximate copies
of the original unique minimum of the truncated potential
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KS axion potentials have O(1) minima

Now consider

V (θ) =
∞

α=1

(q(α) · τ ) e−2πq(α)·τ cos

2πq(α) · θ + δα



where q(α) are non-negative integer linear combinations of

p(a) =










1
0
0
...
0




,





0
1
0
...
0




, · · · ,





0
0
0
...
1




,q(1),q(2),q(3),q(4)






Claim: this potential has | detQred.| = O(1) minima
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V (θ) =
∞

α=1

(q(α) · τ ) e−2πq(α)·τ cos

2πq(α) · θ + δα



Argument: we may define a “reduced” or truncated potential

Vred.(θ) =
N

γ=1

(q(γ) · τ ) e−2πq(γ)·τ cos

2πq(γ) · θ + δγ



where the {q(γ)} ⊂ {q(α)} are chosen according to an iterative procedure
[2309.01831]. Since all τ i ≫ 1 to have control of the instanton expansion,
the (infinitely many) terms we have neglected in V are very small and can
only lift degeneracies of copies of the single minimum of Vred.. The amount
of distinct minima is exactly | detQred.| = O(1) because Qred. is sparse
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Results
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Conclusions

We showed that in a large class of controlled axion EFTs descending
from string theory, each axion potential has a simple structure with
an O(1) amount of minima. This should be contrasted with random
axion landscapes where all entries in Q are O(1): then
Nvac ∼ | detQ| ∼

√
N! ≈ 10555 for N = 491

To potentially get a rich structure in individual axion potentials we
require tools that can go beyond the controlled limit we have taken
(e.g. large non-perturbative corrections to K, large corrections in the
α′ expansion)

Each axion potential may be simple, but there are many : one may
change the CY topology (in or out of the KS list), or for fixed
geometry change the flux. Transitions between topologies or flux
configurations may populate a sufficiently complex landscape that
solves the CC problem anthropically

In random axion landscapes, there are phenomenologically interesting
inflationary patches. What about in the KS axiverse?
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