Effects of PQ symmetry breaking on the axion cosmological production through misalignment

Upcoming work with Luca di Luzio

Philip Sørensen Hamburg, 01.02.2024

Università degli Studi di Padova

Background

Università degli Studi di Padova

The QCD axion potential and VEV

> Axion T-dependence: QCD generates a potential of the form (Lattice fit: Borsanyi et al. 2016)

$$V_{\rm QCD} \approx -m_a^2(T) f_a^2 \cos\!\left(\frac{a}{f_a}\right) \quad \text{where} \quad m_a^2(T) \approx m_a^2 \, \max\left[\left(\frac{T}{T_{\rm QCD}}\right)^{-2b}, \ 1\right]$$

where $b \approx 3.92$ and $T_{QCD} \approx 150 \text{ MeV}$

> PQV sensitivity: QCD preserves PQ - ensured by Vafa-Witten Other contributions in general violate it:

$$V(\theta) \approx \underbrace{\Lambda_{PQ}^4 \theta}_{\sim \text{anything else}} + \frac{1}{2} \underbrace{\Lambda_{PQ}^4 \theta_{\text{eff}}^2}_{\supset \text{QCD}} + \mathcal{O}(\theta^3)$$

The VEV must be small today:

$$\theta_{\rm eff} \simeq -\frac{\Lambda_{PQ}^4}{\Lambda_{\rm PQ}^4} \lesssim 10^{-10} \quad {\rm from \ nEDM}$$

Dark matter from misalignment

- > Axion initially frozen at a random $\theta_{ini} \in -\pi, \pi$
- > Field starts oscillating when $m_a(T) > 3H(T)$
- > Generates a DM relic density:

$$\rho_{a,\,\mathrm{today}} \approx \frac{1}{2} \underbrace{\underset{\approx(0.75 \;\mathrm{MeV})^4}{m_a f_a^2}} \theta_{\mathrm{ini}}^2 \frac{m_a(T_{\mathrm{OSC}})}{m_a} \frac{g_{*s}(T_0)}{g_{*s}(T_{\mathrm{OSC}})} \left(\frac{T_0}{T_{\mathrm{OSC}}}\right)$$

3

Matches the observed DM relic only for a unique oscillation temperature:

$$T_{\rm osc} \approx 900 \; {\rm MeV} \; \left(rac{
ho_{a, \, {\rm today}}}{
ho_{\rm DM, today}}
ight)^{-1/7} heta_{\rm ini}^{2/7}.$$

PQ violation at higher temperatures?

Large hierarchy at T_{osc} :

$$rac{V_{
m QCD}(900~{
m MeV})}{V_{
m QCD}}\sim 8 imes 10^{-7}$$
 .

- > PQ violation more competitive at higher temp.
- > However, constant temperature PQV can't dominate at $T_{osc} \approx 900 \text{ MeV}$
- > Higher $m_a \rightarrow$ higher $T_{osc} \rightarrow$ possibility of PQV domination:

$$V_{PQ} \gtrsim V_{QCD}(T_{osc})$$
 possible for $m_a \gtrsim 5 \times 10^{-3} \text{ eV}$

Some hope of interesting phenomenology?

Constant temperature PQ violation

Università degli Studi di Padova

Constant temperature PQ violation

Possible origins:

- > Planck suppressed operators
- > Any BSM physics far above $T\sim 1~{\rm GeV}$

General form:

$$V_{\mathcal{PQ}} = -\Lambda^4_{\mathcal{PQ}} \cos\left(n\theta + \delta_{\mathcal{PQ}}\right)$$

> Already studied in litterature: (Jeong, Matsukawa, Nakagawa, Takahashi, 2022)
 > Two distinct regimes

The two regimes identified by Jeong et al.

Smooth shift regime

Smooth shift regime

Smooth shift regime

Trapped misalignment - analytic solution

- > General arguments: $m_a > 5 \times 10^{-3} \text{ eV}$
- > DM under-production \rightarrow Trapped misalignment more interesting
- > Trapped misalignment release condition:

$$rac{\partial V}{\partial heta} = 0$$
 and $rac{\partial^2 V}{\partial heta^2} = 0,$

Simplifies to

$$\begin{split} \tan \theta_{\text{trap}} &= \frac{1}{n} \tan \left(n \theta_{\text{trap}} + \delta_{\mathcal{PQ}} \right) \quad \rightarrow \quad (n-1) \quad \mathcal{O}(1) \text{ release angles} \\ T_{\text{trap}} &\approx 1.3 \text{ GeV } \left(\frac{n \Lambda_{\mathcal{PQ}}}{10^{-3} \text{ GeV}} \right)^{-0.13}. \end{split}$$

> Freedom to choose $T_{trap} \rightarrow$ choose DM relic!

Constraints from nEDM

VEV constrained by nEDM:

$$|\theta_{\rm eff}| pprox rac{n \Lambda_{PQ}^4}{m_a^2 f_a^2} \sin \delta_{PQ}, \quad {
m must \ satisfy} \quad |\theta_{\rm eff}| < 10^{-10}$$

Saturating the nEDM bounds yields best-case DM relic:

$$\frac{\rho_{a, \text{today}}}{\rho_{\text{DM, today}}} \lesssim 5 \times 10^{-4} \frac{\theta_{\text{ini}}^2}{\sin^{0.88}(\delta_{\mathcal{PQ}})}, \quad \text{for} \quad m_a \gg 10^{-3}$$

Trapped misalignment - numeric solution

Trapped misalignment - tuned regime

 Results in the tuned regime from Jeong, Matsukawa.
 Nakagawa, Takahashi, 2022:

> Notation:

$$\theta_H = \delta_{PQ}$$
$$r = \frac{\Lambda_{PQ}^4}{m_a^2 f_a^2}$$

> 100% DM requires tuning:

 $\delta_{PQ} < 10^{-3}$

Temperature-dependent PQ violation

Università degli Studi di Padova

Temperature-dependent PQ violation

To improve, we now go to temperature-dependent potentials:

$$V_{\rm th} = -\Lambda^4_{\mathcal{PQ}}(T) \times \cos\left(n\theta + \delta_{\mathcal{PQ}}\right)$$

Y. Zhang (2305.15495) proposed to generate such potentials from

$$\mathcal{L} \supset \left(rac{\phi}{\Lambda_{PQ}}
ight)^n imes \mathcal{O}_{\mathsf{SM}}$$

- > Proposed as a solution to DW problem
- > Zhang considered only n = 1
- > We generalize to n > 1, update constraints, and evaluate DM

Which SM fields can we couple to?

- > Relevant temperature: $T \gtrsim$ GeV: After EWSB, before QCD phase transition
- > Only fields with $m \lesssim {\rm GeV}$
- > Candidate fermion fields: e, μ, u, d, s :

$$V_{\rm th,f} \approx -\frac{n_{\rm col}}{6} \left(\frac{\frac{1}{\sqrt{2}}f_a}{\Lambda_{PQ}}\right)^n m_f^2 T^2 \cos\left(n\theta + \delta_{PQ}\right) \quad {\rm for} \quad T < v_{\rm EW}$$

> Gauge boson candidates: Gluons and photons:

$$V_{\text{th,GG}} \approx \text{loop factor} \times 2\pi \alpha_s^2 \left(\frac{\frac{1}{\sqrt{2}}f_a}{\Lambda_{PQ}}\right)^n T^4 \cos\left(n\theta + \delta_{PQ}\right)$$

What about photons? See our paper!

Misalignment impact of T-dependent PQV

Previous solutions can be straight-forwardly generalized:

$$\Lambda^4_{\mathcal{P}\!\mathcal{Q}} \to \Lambda^4_{\mathcal{P}\!\mathcal{Q}}(T) = \lambda^4_{\mathcal{P}\!\mathcal{Q}} \left(\frac{\frac{1}{\sqrt{2}} f_a}{\Lambda_{\mathcal{P}\!\mathcal{Q}}}\right)^n T^q$$

General solution:

$$T_{\rm trap} \approx \left(2^{\frac{n}{4b}} n^{-\frac{1}{2b}} \lambda_{\underline{PQ}}^{-2/b} m_a^{1/b} f_a^{-\frac{n-2}{2b}} T_{\rm QCD} \Lambda_{\underline{PQ}}^{\frac{n}{2b}}\right)^{\frac{2b}{2b+q}}$$

Fix to target of $T_{\text{trap}} \approx 900 \text{ MeV} \rightarrow \text{DM}$ solution for $\Lambda_{\mathcal{PQ}}$

Understanding the evolution

The evolution can be understood with effective masses:

$$m_{a,\text{th}}^2 \equiv \frac{1}{a} \frac{\partial V_{\text{th}}}{\partial a} \Big|_{\text{min}}$$

Allows for easier interpretation of evolution:

> Release condition:

$$m_a(T_{\rm trap}) \approx m_{a,{\rm th}}$$

> Hubble domination:

$$m_{a,\mathsf{th}} > 3H$$

Understanding the evolution

Understanding the evolution

Constraints on Fermion Yukawas

The scenario to a number of constraints, investigated by Zhang (2209.09429).Coleman-weinberg driven VEV:

$$\theta_{\rm eff} \approx \frac{nn_{\rm col}}{4\pi^2} \frac{m_f^4}{m_a^2 f_a^2} \left(\frac{f_a}{\sqrt{2}\Lambda_{PQ}}\right)^n \left[\ln\!\left(\frac{m_f^2}{\mu^2}\right) - 1\right] \sin \delta_{PQ} \ll 10^{-10}$$

> Long range interactions:

$$\begin{split} \mathcal{L} \supset g_{a\overline{f}f}a\overline{f}f \quad \text{where} \quad g_{a\overline{f}f} &= \frac{m_f}{f_a} \left(\frac{f_a}{\sqrt{2}\Lambda_{\mathcal{PQ}}}\right)^n \sin \delta_{\mathcal{PQ}} \\ &\to V_{\text{Yukawa}} = -g_{a\overline{f}f}^2 \frac{e^{-m_a r}}{4\pi r} \end{split}$$

> Stellar cooling bound on $g_{a\overline{f}f}$

Example solution: Testable with fifth force

Electron: Value of Λ_{PQ} which yields observed DM densitiy for n=2

Constraints on gluon interactions

> For GG, The VEV $\langle GG \rangle$ dominates generates a zero-temperature PQV potential:

$$V_{\langle GG \rangle} = -2\alpha_s \langle GG \rangle \left(\frac{f_a}{\sqrt{2}\Lambda_{\mathcal{PQ}}}\right)^n \cos(n\theta + \delta_{\mathcal{PQ}}) \quad \text{where} \quad \left\langle\frac{\alpha_s}{\pi}GG\right\rangle \approx (330 \text{ MeV})^4$$

> As before, $V_{\langle GG \rangle} \rightarrow \theta_{\text{eff}} \rightarrow$ upper bound on $\Lambda_{\mathcal{PQ}} \leftarrow$ dominates long range forces > Viable solutions for $m_a > 10^{-5}$ eV: Example:

$$\frac{\text{DM solution for } \Lambda_{\underline{PQ}}}{\text{Upper bound on } \Lambda_{\underline{PQ}}} \approx 1.5 \times \left(\frac{10^{-10}}{\theta_{\text{eff}}}\right)^{1/2} \quad \text{for} \quad \delta_{\underline{PQ}} = 3, \ n = 2$$

- > All non-tuned solutions are close to this nEDM bound
- > Warning! Assumes free QCD close to Λ_{QCD} !

Summary

- > We expanded on existing literature by considering misalignment impact of temperature-dependent PQ violating potentials
- > Take-away points:
 - PQ-violating potentials can impact misalignment without violating nEDM
 - If V_{PQ} is constant in T near $T \sim \text{GeV}$, and there is no tuning, then
 - V_{BC} can have an impact for $m_a \gg 10^{-3}~{
 m eV}$
 - = $\frac{\rho_{a,\text{today}}}{\rho_{\text{DM,today}}}$ cannot be raised further than few $\times 10^{-4}$
 - If V_{PQ} is T-dependent, is generated by $(\phi/\Lambda_{QCD})^n \times \mathcal{O}_{SM}$, and there is no tuning, then
 - axion DM can motivated by trapped misalignment across the $m_a \sim 10^{-5} \text{ eV} \rightarrow 10^{-1} \text{ eV}$ range
 - all DM solutions found here have clear signals in either fifth-force or nEDM
- > What to expect from our paper: Better overview of viable parameters, monopole-dipole forces, and conclusions on *FF*.

Thank you!

Questions?

Contact

Philip Sørensen 0000-0003-4780-9088 University of Padova / INFN Padova philip.soerensen@pd.infn.it +4530897153