

Development of superconducting circuits in Italy

2 February 2024

Federica Mantegazzini

Funded by the European Union

> fmantegazzini@fbk.eu www.fbk.eu

and and and and and

TTAL IN COMPANY

FBK-Sensors & Devices Centre

at a glance

Researchers 65 **Technicians** 20 20 PhD

100+ EMPLOYEES

RESEARCH UNITS + Partnership with CNR

40+ COMPANY COLLABORATIONS Inc. 1 newco

65+ ACTIVE FINANCED PROJECTS

2 MAIN INFRASTRUCTURES (MicroNanoFacility + Labssah)

41 **ACTIVE PATENTS**

20 EU projects

Micro and Nano fabrication Facility IPCEI1: 1200m² moving to >2000m² semiconductor ISO4-6 cleanrooms

6" Microfabrication Area Clean Room Detectors

700 m²; Class 10/100 0,8 um CMOS pilot line: Ion Implantation, Oxidation, Diffusion, RIE, Deep RIE (silicon and oxide), Lithography (stepper 0.35 um and mask aligner), metal sputtering, optical profilometry

Clean Room MEMS

500 m² Class 100/1000 diffusion, lithography (mask aligner), wafer bonding, electroplating, Si bulk micromachining, metal evaporation, RIE, mechanical and optical profilometry

Testing Area

300 m² manual parametric testing, automatic parametric/functional testing, optical testing (spectral responsivity, quantum efficiency), solar cells efficiency characterization, gas and pressure sensors test benches

Integration Area

100 m² clean room Class 1000 Microassembly station; screen printing, bonding (ball & wedge bonder), Shear-Pull Tester, reflow oven, CNC micro-mill, pick and place

Nano- and Micro- Analytical Facility

Nano Ramen, FIB-SEM-EDX-EBSD, D-SIMS, TOF-SIMS, XPS, AFS, XRD/XRF

Characterisation facility

D-SIMS Dynamic Secondary Ion Mass Spectrometry

ToF-SMS Time of Flight Secondary Ion Mass Spectrometry

XPS X-Ray Photoelectron Spectroscopy

FIB-SEM-EDX-EBSD

AFM Atomic Force Microscopy

Nano Raman

XRD/XRF X-ray Diffraction / X ray Fluorescence

Composition depth profile very high sensitivity: ppm-ppb depth resolution: 1nm; lateral resolution: 1mm

Elemental chemical mapping very high sensitivity: ppm-ppb lateral resolution: 0.3 mm

Chemical and elemental surface analysis sensitivity: 0.5-1%; lateral resolution: 5 mm

Focused Ion Beam; Electron microscopy; Energy Dispersion X-Ray; Electron Back Scattered Diffraction

Surface microscopy vertical resolution: 0.5nm; lateral resolution: 5 nm

Raman Spectroscopy coupled to SPM microscopy

Elemental, crystallographic phase and stress analyses Spatial resolution: 1cm; Sensitivity: 0.1-1%

Characterisation facility

D-SIMS Dynamic Secondary Ion Mass Spectrometry

ToF-SMS Time of Flight Secondary Ion Mass Spectrometry

Dedicated cryogenic lab

Dry dilution refrigerator, $T_{\rm b} = 10 \text{ mK} \sqrt{$

Pulse tube cooler, T_b = 2 K

Vector Network Analyser

Spectrum Analyser

Microwave generators

Composition depth profile very high sensitivity: ppm-ppb depth resolution: 1nm; lateral resolution: 1mm

Elemental chemical mapping very high sensitivity: ppm-ppb lateral resolution: 0.3 mm

WORK IN PROGRESS

lemental surface analysis : lateral resolution: 5 mm

i; Electron microscopy; Energy Electron Back Scattered Diffraction

0.5nm; lateral resolution: 5 nm

py coupled to SPM microscopy

bgraphic phase and stress analyses 1cm; Sensitivity: 0.1-1%

... and several projects

MiSS

SUPERGALA

Superconducting circuits in Italy

Several groups...

Fondazione Bruno Kessler, Trento INFN TIFPA, Trento University of Milano-Bicocca, Milan INFN Frascati Laboratories, Rome INFN Legnaro Laboratories, Padova INFN Lecce INFN Salerno INRiM (National Metrology Institute), Turin CNR SPIN, Naples

i Ricerca in HPC, um Computing

European Commissior

Quantum Technologies at UniMiB

Projects:

- DARTWARS (Unimib, INFN, FBK, INRiM, NIST): Development of broadband quantum limited parametric amplifiers for high fidelity readout of detectors and qubit arrays;
- **Qub-IT** (Unimib, INFN, FBK, CNR): Development of **qubit array** for quantum sensing and quantum computing. Development of custom electronics for qubit readout;
- CalQuStates (Unimib, INRiM): Development of microwave metrology tools in cryogenic environments for precise characterization of qubits, resonators and parametric amplifier;
- B-NGO (Unimib, INFN)
 Development of innovative substrates for improving the resonators loss and qubit decoherence times;

Group M.Borghesi, P. Campana, R. Carobene, M. Faverzani, E. Ferri, A. Giachero, M. Gobbo, A. Irace, D. Labranca, R. Moretti, A. Nucciotti, L. Origo 5 mm

Istituto Nazionale di Fisica Nucleare

Ricerca **Tecnologica**

Qubit array developed in collaboration with INFN and produced at NIST

08

Quantum Technologies at the INFN LNF F_q=6.57GHz C_{tot}=100fF Mechanical Aluminum JJ with machining area about 200 x 350 nm EHT = 5.00 kV Signal A = InLens Stage at T = 0.0 * 4 Oct 2023 WD = 3.9 mm Mag = 42 X 15.07:11 EHT = 5.00 kV Signal A = InLens Stage at T = 0.0 * 4 Oct 202 WD = 4.0 mm Mag = 16.52 K X 15:12:3 Manufacturing of 3D qubits at IFN CNR VIFN 500 µm Bare cavity frequency INFN v_r= 7.268 GHz Cryogenic measurements at INFN LNF 0 -5 - S_{21}^{32} (dB) S_{21}^{30} (dB) -10 [dbm] -15 PVNA 25 Cavity -20 7,4645 7,4646 7,4647 7,4648 7,4649 Frequency (GHz) -25 $\frac{1}{2\pi}(\chi + \frac{\chi_{12}}{2})$ Al cavity characterisation -30

Credits: Simone Tocci

Superconducting Devices at INRiM

Improvement of readout of weak microwave signals with a Quantum Limited Amplifier

Microwave quantum illumination (Quantum Radar) to improve detection of low- reflectivity object or to calibrate single photon detector (Heralding Source)

Credits: Emanuele Enrico

INRIM ISTITUTO NAZIONALE DI RICERCA METROLOGICA

Superconducting Quantum Devices team in Naples

Main research activities

Superconducting Qubits and Hybrid • quantum devices

Recent publications: H. G. Amad et al. Condens. Matter 8(1), 29, (2023)

Vettoliere et al. Nanomaterials 12(23), 4155 (2022)

H. G. Amad et al. Phys. Rev. B 105, 214522 (2022)

SFQ digital qubit control and readout .

Recent publication: L. Di Palma et al. Phys. Rev. Applied 19, 064025 (2023)

Superconducting Parametric Amplifiers

Recent publication: M. Esposito. et al. Phys. Rev. Lett. 128, 153603 (2022)

Credits: Martina Esposito

TruePA Funded by the European Union

Ministero

Major active projects

Funded by the European Union

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Consiglio Nazionale delle Ricerche

People

D. Massarotti, D. Montemurro, M. Esposito Pls: G. Ausanio, L. Parlato, G. P Pepe, F. Tafuri **3 Postdoctoral researchers, 10 PhDs**

dell'Università e della Ricerca

Superconducting devices in Trento

A growing group

Projects

- **INFN: DARTWARS, Qub-IT** ${\color{black}\bullet}$
- Horizon Europe: Qu-Pilot, MiSS ${\color{black}\bullet}$
- **PNRR NQSTI** •
- QuantERA: LEMAQUME
- ... and others

Collaborators

- INFN, Italy
- INRiM, Italy
- NIST, U.S lacksquare
- **CNRS**, France lacksquare
- Aalto University, Finland

Quantum Science and Technology in Trento

Federica Mantegazzini, Felix Ahrens, Nicolò Crescini, Alessandro Irace

Paolo Falferi, Renato Mezzena, Andrea Vinante

lacopo Carusotto, Gianluca Rastelli, Alberto Biella

University of Milano-Bicocca, Italy

We have opening positions for PhDs and postdocs!

"Developing superconducting circuits" means...

Cryogenic characterisation 🖛 Experimental set-up

Experiment / Application

Packaging

... for experimental applications

Multi-qubit systems with Quantum limited noise read-out

Hybrid superconducting magneto-mechanical systems

READ-OUT

QUANTUM SENSING

Neutrino mass experiments

Microwave photons detection

Hybrid quantum systems

Microwave SQUID multiplexer

Credits: KIT

Credits: 10.1038/s41567-018-0066-3

Credits: 10.1103/PhysRevLett.130.033601 Credits: 10.1103/RevModPhys.93.025005

Light-matter interaction

Cross Josephson junctions at FBK

Quantum Science and Technology in Trento

page

Advantages

- High control on areas (and on junction parameters)
- Two-layers process

Challenge

- Develop an efficient Ar plasma cleaning
- Optimise the second lithographic step (lift-off)

Superconducting microwave resonators

page

Superconducting microwave resonators

Most recent results with aluminium based lumped element resonators

Superconducting microwave resonators

Superconducting building blocks

Superconducting transmon qubits

Chip design: qubit #1: fixed-frequency resonator driven transmon

Superconducting building blocks

Travelling Wave Parametric Amplification (TWPA)

Parametric amplification = wave-mixing process based on parametric non-linearity

Superconducting amplifiers

for microwave amplification:

- (Ideally) non-dissipative
- Ultra-low-noise amplification \rightarrow Quantum noise limit: $T_N/f \sim h/2k_B \sim 25 \text{ mK/GHz}$

Non-linearity given by Josephson junctions or Kinetic inductance of the material

NbTiN films for Superconducting Parametric Amplifiers

Kinetic Inductance Travelling Wave Parametric Amplifiers (KI-TWPAs)

- NbTiN thin film: reactive sputter deposition with Nb_{80%}Ti_{20%} target
 - \rightarrow high control on film properties by fine tuning of the deposition process
- Artificial transmission line: increased interaction time
- Unloaded/loaded segments: phase matching

NbTiN film Si substrate

page

page

25

page 26

=5<

page 27

My contacts

Federica Mantegazzini Fondazione Bruno Kessler Centre for Sensors and Devices Via Sommarive 18, I-38123 Trento – Italy

E-mail: fmantegazzini@fbk.eu Phone: +39 0461 314 141

Website: <u>sites.google.com/fbk.eu/federica-</u> <u>mantegazzini</u>

SHORT SUMMARY

Several groups in Italy are developing superconducting devices

AT FBK WE ARE OPTIMISING THE FUNDAMENTAL BUILDING BLOCKS: JOSEPHSON JUNCTIONS, RESONATOR, HIGH KINETIC INDUCTANCE FILMS

TARGETED DEVICES: QUBITS, PARAMETRIC AMPLIFIERS, HYBRID SYSTEMS

TARGETED APPLICATIONS: cQED, QUANTUM SENSING, PARTICLE DETECTORS, TESTING of QUANTUM MODELS

Extra material

31 January 2024

Federica Mantegazzini

fmantegazzini@fbk.eu www.fbk.eu

mar and marine and

Cross Josephson junctions at FBK - 1st generation

The junction normal resistance R_N is related to the critical current I_c : $R_{\rm N} = (\pi/4) \cdot V_{\rm g}$

Resistance measurements at T = 300 K

Junction resistance vs $\sqrt{0x}$ dose

Junction resistance vs junction area (for different oxidation doses)

IV characteristics

page

Cross Josephson junctions at FBK - 2nd generation

The junction normal resistance R_N is related to the critical current I_c : $R_{\rm N} = (\pi/4) \cdot V_{\rm g}$

Resistance measurements at T = 300 K

Junction resistance vs $\sqrt{0x}$ dose

Junction resistance vs junction area (for different oxidation doses)

Cryogenic measurements at $T_{\rm b} \approx 20 \, {\rm mK}$

IV characteristics

pade

Ministero dell'Università e della Ricerca

Superconducting Parametric Amplifiers

Parametric amplification = wave-mixing process based on

parametric

non-linearity

Superconducting amplifiers for microwave amplification:

(Ideally) non-dissipative

Ultra-low-noise amplification

 \rightarrow Quantum noise limit: $T_N/f \sim h/2k_B \sim 25 \text{ mK/GHz}$

First NQSTI Congress 15-16 January 2024, Rome Federica Mantegazzini Fondazione Bruno Kessler

Finanziato dall'Unione europea **NextGenerationEU**

Ministero dell'Università e della Ricerca

Different approaches: JPAs vs TWPAs

Increasing **signal gain** by *increasing* the **interaction time** in the non-linear medium

First NQSTI Congress 15-16 January 2024, Rome

Federica Mantegazzini **Fondazione Bruno Kessler**

Larger bandwidth Larger saturation power