Recent results of QUAX @ LNF

COST Action COSMIC WISPers (CA21106) — Working Group Meeting 1 - 2 Feb 2024 — DESY, Hamburg

The QUAX experiment is a light DM hunt experiment

- Classical haloscope (just like ADMX, HAYSTAC etc)
- Searching for QCD axions
- Between 8-10~GHz

LNL (Legnaro)

QUAX timeline

Group and lab are enlarging

Haloscope ingredients

QUAX@LNF first axion search with tuning rod mechanism

Dilution refrigerator

Leiden Cryogenics

Cooling power $450 \ \mu W @ 100 \ m K$

Temp. of 10 mK plate $T_{base} \simeq 20 \ mK$

Cavity temperature $T_{cav} \simeq 30 \ mK$

9 T magnet

Anchored to 4 K stage

- Reached 9 T
- Took data at one freq with 9 T
- Quench
- Ramp to 8 T ok
- Took data with 8 T stably for 2 weeks

Microwave cavity + tuning

HFSS simulations by Simone Tocci

- OFHC Copper
- Radius = 13.5 mm, height = 246 mm
- TM010 mode

- Starting frequency ($\alpha = 0^{\circ}$): 8.83 GHz
- Tuning $\sim \! 300$ MHz with $\Delta lpha \sim 80^\circ$

Microwave cavity + tuning

Rod and antenna movimentations

- 1 linear motor for Antenna
- 1 rotative motor for Rod

Amplification chain

Calibration + spectrum

Fits by Gianiuca Vidali (student)

From fit we extract

 $v_c, Q_0, \beta, Gain$

- V = 0.141 l
- $f_{start} = 8.83 \text{ GHz}$
- $m_a = 36.5 \, \mu eV$
- $Q_0 = 50000$
- β = 0.5
- $C_{010} = 0.667$
- $B_0 = 8 \text{ T}_{(B_{av}=6.5 \text{ B}_0)}$
- $\Delta t = 3760 \, s$
- $T_{cav} = 40 \text{ mK}$

From calibrated power spectrum we extract the noise temp $T_n \simeq 4.5 K$

6 MHz tuning

Performed the same procedure on each run

- Q_0 , β and Gain remain stable
- $\Delta m_a = 25 \, neV$
- Effective scan rate in this test:

220 MHz/year

Analysis

- Fit to power spectra with Savitzky-Golay filter to calculate residuals
- Maximum likelihood over all scans to estimate the best value $\hat{g}_{a\gamma\gamma}$

$$\chi^2 = \sum_{\alpha=1}^{N_{\text{scan}}} \sum_{i=1}^{N_{\text{bin}}} \left[\frac{R_i^{(\alpha)} - S_i^{(\alpha)}(m_a, g_{a\gamma\gamma}^2)}{\sigma_{\text{Dicke}}^{(\alpha)}} \right]^2$$

• Calculate the efficiency of the SG filter by Monte Carlo simulations with fake axion signal $(\varepsilon = 0.84)$

Final plot - $g_{a\gamma\gamma}$

PRELIMINARY

Avg value
$$g_{a\gamma\gamma} = 2 \times 10^{-13} \ GeV^{-1}$$

Bonus: superconducting cavities

ReBCO-tapes cavity

<u>Nb₃Sn cavity by FNAL</u>

*S. Kono et al; Nature Phys 14, 546–549 (2018)

Conclusions

- First QUAX@LNF run with complete haloscope
 - 2 weeks of data taking.
 - **9 T magnet.** Operated at 8 T.
 - Tuning rod to scan frequencies.
- Savitzky-Golay + Maximum Likelihood analysis.
- Still much room for improvements.
- QUAX competitive in the panorama.