Plasma Instabilities of TeV Pair Beams induced by Blazars

Mahmoud Alawashra

Martin Pohl Astroparticle Physics Theory Group 11th Meeting of the Astroparticle Physics Committee (APC) April 25th 2024

Cosmic Voids

600 Mpc Sloan Digital Sky Survey

2

300MpcX300Mpc
TNG300 Simulation

Blazars are AGN with their jet pointing at us.

- Blazars are AGN with their jet pointing at us.
- TeV gamma-rays attenuate in the cosmic voids giving GeV cascade.

- Blazars are AGN's with their jet pointing to us.
- TeV gamma-rays attenuate in the cosmic voids giving GeV cascade.

Are the two solutions independent of each other?

Are the two solutions independent of each other?

, IGMFs impact on the instability.

Alawashra and Pohl (2022) ApJ 929 67

IGMFs impact the instability

• Weak IGMFs with small correlation lengths, $\lambda_B \ll \lambda_e$, deflect the beam stochastically

$$\Delta \theta = \frac{1}{\gamma} \sqrt{1 + \frac{2}{3} \lambda_e \lambda_B} \left(\frac{e B_{IGM}}{m_e c}\right)^2}$$

• IGMFs widening of the beam impacts the instability growth:

$$\omega_i \propto \frac{1}{\Delta \theta^2}$$

Alawashra and Pohl (2022) ApJ 929 67

Instability suppression by the IGMFs

8

IGMFs impact the instability

• Assume certain non-linear saturation of the waves

$$\begin{aligned} \tau_{\rm loss}^{-1} &= 2 \ \delta \ \omega_{i,\rm max} \\ \delta &= W_{\rm tot}/U_{\rm beam} \end{aligned}$$
 We consider the one found in Vafin et al. (2018)
$$\tau_{\rm loss}/\tau_{\rm IC} = 0.026$$

IGMFs impact the instability

• Assume certain non-linear saturation of the waves

$$\tau_{\rm loss}^{-1} = 2 \, \delta \, \omega_{i,\rm max}$$
$$\delta = W_{\rm tot}/U_{\rm beam}$$

We consider the one found in Vafin et al. (2018)

 $\tau_{\rm loss}/\tau_{\rm IC}=0.026$

• The instability is suppressed by the IGMFs when

$$\tau_{\rm loss} = \tau_{\rm IC}$$

Instability suppression by the **IGMFs**

Is there something else that can impact the instability?

Is there something else that can impact the instability?

Yes, Nonlinear feedback.

Perry and Lyubarsky (2021)

Alawashra and Pohl (2024) ApJ 964 82

Feedback of the instability on the pair beam

Breizman and Ryutov (1970)

$$\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p} \right)$$

 $+\frac{1}{p^2}\frac{\partial}{\partial p}\left(pD_{p\theta}\frac{\partial f}{\partial \theta}\right)+\frac{1}{p^2}\frac{\partial}{\partial p}\left(p^2D_{pp}\frac{\partial f}{\partial p}\right)$

f: Beam distribution
 D_{ij}: Diffusion coefficients
 W: Wave energy density
 ω_i: Linear growth rate

$$D_{ij}(\boldsymbol{p}) = \pi e^2 \int d^3 \boldsymbol{k} \, W(\boldsymbol{k}, t) \, \frac{\kappa_i \kappa_j}{k^2} \, \delta\big(\boldsymbol{k} \cdot \boldsymbol{v} - \omega_p\big)$$

$$\frac{\partial W(\boldsymbol{k},t)}{\partial t} = 2 \left(\omega_i(\boldsymbol{k}) + \omega_c \right) W(\boldsymbol{k},t)$$

$$\omega_{i}(\boldsymbol{k}) = \omega_{p} \, \frac{2\pi^{2} n_{b} e^{2}}{k^{2}} \, \int d^{3} \boldsymbol{p} \left(\boldsymbol{k} \cdot \frac{\partial \boldsymbol{f}(\boldsymbol{p})}{\partial \boldsymbol{p}} \right) \delta \left(\omega_{p} - \boldsymbol{k} \cdot \boldsymbol{v} \right)$$

Feedback of the instability on the pair beam

Breizman and Ryutov (1970)

$$\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p} \right)$$

$$+ \frac{1}{p^2} \frac{\partial}{\partial p} \left(p D_{p \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{p p} \frac{\partial f}{\partial p} \right)$$
The plasma waves impact the beam impacts the plasma waves the plasma

Feedback of the instability in Perry and Lyubarsky (2021)

The significant feedback initially is the beam widening θ .

12

Feedback of the instability in Perry and Lyubarsky (2021)

Considered simplified 1D beam distribution.

$$g(\theta) = \int_0^\infty dp \, p \, f(p,\theta) \approx \exp(-0.2(\gamma\theta)^5)$$
$$\gamma = 10^6$$

12

Feedback of the instability in Perry and Lyubarsky (2021)

The beam widens by one order of magnitude, suppressing the instability energy loss of the beam.

$$\gamma = 10^6$$

Questions

 What is the feedback impact on the GeV cascade? Need the realistic 2D beam distribution.

 What is the impact of continuous pair production? Need to include pair injection in the beam evolution equation.

What is the feedback impact on the GeV cascade?

 Start with the realistic beam distribution at 50 Mpc from blazar (Vafin et al (2018)).

 Start with the realistic beam distribution at 50 Mpc from blazar (Vafin et al (2018)).

Initially focused beam

Plasma waves grow due to the focused beam

k

ο±

 $\Delta \theta$

 e^{\pm}

ĸ

5

The feedback of the waves widens the beam

5

Waves growth is reduced

15

 $\omega_i \propto \frac{1}{\Delta \theta^2}$

Waves get damped

15

 $\omega_i < |\omega_c|$

Significant widening of the beam

The instability is suppressed by the widening

Beam energy loss is subdominant

What is the impact of continuous pair production?

What is the impact of pairs continuous production ?

Continuous production of new pair due to the gamma-rays annihilation with EBL

We just need to add a constant source term, Q_{ee} .

$$\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + Q_{ee}$$
$$\frac{\partial W(k,t)}{\partial t} = 2 \left(\omega_i(k) + \omega_c \right) W(k,t)$$

We used the production rate found by Vafin et. al (2018).

New focused pairs get produced

 $A(\gamma)$

 $\Delta \theta =$

 e^{\pm}

k

 e^{\pm}

 e^{\pm}

 $\Delta \theta$

A new quasi-steady state is established

A balance between the instability widening and the injection is established.

 e^{\pm}

 e^{\pm}

 $\Delta \theta$

k

The beam keeps widening

Observational implications

Conclusions

- IGMFs suppress the instability.
- Widening feedback is the dominant instability feedback.
- New quasi-steady state with continues pairs production.

Outlook

 Calculating the instability broadening at different distances in the IGM.

Thank you

Back up slides

Suppression of the cascade emission by IGMFs

Suppression of the cascade by instability energy loss

What about the other angular diffusion term θp ?

$$\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p} \right) \\ + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p D_{p \theta} \frac{\partial}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{p p} \frac{f}{\partial \theta} \right)$$

With time: Decreases Constant

We need to compare:

$$I_{\theta p} = \int d \cos \theta \left| \frac{\partial f}{\partial t} \right|_{\theta p} \right| = \int d \cos \theta \left| \frac{1}{p \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p} \right) \right|$$
$$I_{\theta \theta} = \int d \cos \theta \left| \frac{\partial f}{\partial t} \right|_{\theta \theta} \right| = \int d \cos \theta \left| \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) \right|$$

Relevant for pairs with Lorentz factors less than 10⁶

Can we quantify the energy loss/gain in the momentum diffusion terms?

$$\frac{f(p,\theta)}{\partial t} = \frac{1}{p^2\theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta\theta} \frac{\partial f}{\partial \theta}\right) + \frac{1}{p\theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p}\right) + \frac{1}{p^2} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p}\right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p}\right)$$

25

 ∂

Can we quantify the energy loss/gain in the momentum diffusion terms?

$$\frac{df}{dt} \mid_{p\theta} = \frac{1}{p^2} \frac{\partial}{\partial p} \left(p D_{p\theta} \frac{\partial f}{\partial \theta} \right)$$

$$\frac{dU_b}{dt}\Big|_{p\theta}(t) = 2\pi m_e c^2 \int d\theta \ \theta \ \int dp \ p^2 \ \gamma \ \frac{df}{dt} \Big|_{p\theta}(p,\theta)$$

Can we quantify the energy loss/gain in the momentum diffusion terms?

$$\frac{df}{dt} \mid_{p\theta} = \frac{1}{p^2} \frac{\partial}{\partial p} \left(p D_{p\theta} \frac{\partial f}{\partial \theta} \right)$$

$$\frac{dU_b}{dt}\Big|_{p\theta}(t) = 2\pi m_e c^2 \int d\theta \ \theta \ \int dp \ p^2 \ \gamma \ \frac{df}{dt} \Big|_{p\theta}(p,\theta)$$

$$\Delta_{p\theta} \equiv \frac{\Delta U_b}{U_{b0}} \Big|_{p\theta}(t_s) = \frac{1}{U_{b0}} \int_{t_0}^{t_s} dt \frac{dU_b}{dt} \Big|_{p\theta}(t)$$

Momentum diffusion and energy loss are subdominant

The linear growth rate balances the damping rate

Plasma waves energy density evolution

A balance between the instability widening and the injection is established.

 e^{\pm}

 e^{\pm}

 $\Delta \theta$

k

Add more Physics IC cooling

Beam evolution including the full Physics (almost)

$$\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(-\dot{p}_{IC} p^2 f \right) + Q_{ee}$$

The IC cooling is only relevant for particle momentum

$$\dot{p}_{IC} = -\frac{4}{3}\sigma_T u_{CMB}\gamma^2$$

We use the same linear evolution of the plasma waves

$$\frac{\partial W(\boldsymbol{k},t)}{\partial t} = 2 \left(\omega_{\boldsymbol{i}}(\boldsymbol{k}) + \omega_{c} \right) W(\boldsymbol{k},t)$$

Momentum beam distribution evolution

Beam broadening is almost unaffected

strongly on θ_{obs} and the orientation of the halo. The IGMF is modeled as cell-like; each cell has a side length of $\ell_B = 1 \,\mathrm{Mpc}$ and the *B*-field orientation changes randomly from one cell to the next. The templates are generated for each source and for seven values of the field strength, $B = 10^{-16} \text{ G}, 10^{-15.5} \text{ G}, \dots, 10^{-13} \text{ G}$. For higher values of B, the pairs are quickly isotropized and the cascade emission would appear as an additional component to the isotropic gamma-ray background in the LAT energy band. An example of the simulated energy-

Constraints on the IGMF with H.E.S.S. and Fermi LAT ApJ Letters 2023, Volume 950, Number 2 950, L16

Andrew Taylor (private communication)

Simulation steps

2D simulation of the widening feedback

For the wave spectrum, W, we use a logarithmic grid in the coordinates (k_{\perp}, θ^R) where $\theta^R = \left(\frac{ck_{\parallel}}{\omega_p} - 1\right) / \left(\frac{ck_{\perp}}{\omega_p}\right)$. We used 100 grid points for the perpendicular wave number, k_{\perp} , from $10^{-3} \frac{\omega_p}{c}$ to $10 \frac{\omega_p}{c}$, we have verified a convergence of this by using 300 points. For the parameter, θ^R , we used 600 grid points for the interval 10^{-9} to 5×10^{-3} where we have tested this with 1500 grid points. For the beam distribution, f, we use a logarithmic grid in the coordinates (θ, γ) where γ is the beam particle Lorentz factor. We used 100 grid points for γ from 10⁴ to 10⁸ and verified a convergence of this with 300 grid points. Finally for the beam particle angle, θ , we used 600 grid points from 10^{-9} radian to 5×10^{-3} radians tested by using 1500 grid points.

More accurate collisional damping rate from Tigik et al. (2019) 20 times smaller

$$\omega_c(k) = -\omega_p \frac{g}{6\pi^{3/2}} \frac{1}{(1+3k^2\lambda_D^2)^3}.$$
 (8)

Here $g = (n_e \lambda_D^3)^{-1}$ is the plasma parameter, $\lambda_D = 6.9 \text{ cm} \sqrt{\frac{T_e/K}{n_e/\text{cm}^{-3}}}$ is the Debye length, $n_e = 10^{-7}(1 + z)^3 \text{ cm}^{-3}$ is the density of IGM electrons, and $T_e = 10^4 K$ is their temperature. We start integrating eq.(7) at the very low thermal fluctuations level.

Tigik et al. (2019)

$$\omega_{i}(k_{\perp},k_{\parallel}) = \pi \omega_{p} \frac{n_{b}}{n_{e}} \left(\frac{\omega_{p}}{kc}\right)^{3} \int_{p_{\min}}^{\infty} dp m_{e} c \ p \int_{\theta_{1}}^{\theta_{2}} d\theta \\ \times \frac{-2f(p,\theta)\sin\theta + (\cos\theta - \frac{kv_{b}}{\omega_{p}}\cos\theta')\frac{\partial f(p,\theta)}{\partial\theta}}{[(\cos\theta_{1} - \cos\theta)(\cos\theta - \cos\theta_{2})]^{1/2}},$$
(5.32)

where the boundaries are given by

$$\cos\theta_{1,2} = \frac{\omega_p}{kv_b} \left(\cos\theta' \pm \sin\theta' \sqrt{\left(\frac{kv_b}{\omega_p}\right)^2 - 1}\right),\tag{5.33}$$

and

$$p_{\min} = \sqrt{\frac{1 + \left(\frac{ck_{\perp}}{\omega_p}\right)^2 + 2\left(\frac{ck_{\parallel}}{\omega_p} - 1\right)}{\left(\frac{ck_{\perp}}{\omega_p}\right)^2 + 2\left(\frac{ck_{\parallel}}{\omega_p} - 1\right)}}.$$
(5.34)

$$\begin{cases} D_{pp} \\ D_{p\theta} \\ D_{\theta\theta} \end{cases} = \pi \frac{m_e \omega_p^2}{n_e} \int_{\omega_p/c}^{\infty} k^2 dk \int_{\cos\theta_1'}^{\cos\theta_2'} d\cos\theta' \frac{W(\mathbf{k})}{k v_b \sqrt{(\cos\theta' - \cos\theta_1')(\cos\theta_2' - \cos\theta')}} \begin{cases} 1 \\ \xi \\ \xi^2 \end{cases} ,$$
(5.16)

where

$$\xi = \frac{\cos\theta \frac{\omega_p}{kv_b} - \cos\theta'}{\sin\theta}.$$
(5.17)

and the boundaries of $\cos \theta'$ are given by

$$\cos\theta_{1,2}' = \frac{\omega_p}{kv_b} \left[\cos\theta \pm \sin\theta \sqrt{\left(\frac{kv_b}{\omega_p}\right)^2 - 1} \right].$$
(5.18)

$$\begin{pmatrix} D_{pp} \\ D_{p\theta} \\ D_{\theta\theta} \end{pmatrix} = \pi \frac{m_e \omega_p^2}{n_e c \theta} \int_{R(\theta, \gamma)} dk_\perp k_\perp \int_{R(\theta, \gamma)} d\theta^R$$

$$\times \frac{W(k_\perp, \theta^R)}{\sqrt{1 - \left(\frac{\theta^R}{\theta}\right)^2 + \frac{\theta^R}{ck_\perp/\omega_p} \left[1 + \left(\frac{1}{\gamma\theta}\right)^2\right] - \left(\frac{\omega_p}{ck_\perp}\right)^2 \left[\frac{1}{2\gamma^2\theta} + \frac{\theta}{2}\right]^2} \begin{cases} 1 \\ \xi \\ \xi^2 \end{cases}},$$
(B.34)

where

$$\xi = -\frac{1}{\sqrt{1 + 2\theta^R (ck_\perp/\omega_p) + (ck_\perp/\omega_p)^2 (1 + \theta^{R^2})}} \left[\frac{\theta^R}{\theta} \frac{ck_\perp}{\omega_p} + \frac{\theta}{2} - \frac{1}{2\theta\gamma^2}\right], \quad (B.35)$$

and the resonance region $R(\theta, \gamma)$ is defined by the following condition

$$\left(\frac{ck_{\perp}}{\omega_p}\right)^2 \left(\theta^2 - \theta^{R^2}\right) + \frac{ck_{\perp}}{\omega_p} \theta^R \left[\theta^2 + \frac{1}{\gamma^2}\right] - \left[\frac{1}{2\gamma^2} + \frac{\theta^2}{2}\right]^2 \ge 0.$$
(B.36)

Significant widening of the beam

The instability is suppressed by the widening

Unstable wave spectrum evolution

Relevant for pairs with Lorentz factors less than 10⁶

Small energy loss even for higher densities

$$\frac{dU_b}{dt}(t) = -2\frac{dW_{\text{tot}}}{dt}(t)$$

$$= -8\pi \int dk_{\perp}k_{\perp} \int dk_{||}W(k_{\perp},k_{||},t)\omega_i(k_{\perp},k_{||},t),$$
(5.38)

Chang et al. The Astrophysical Journal, 797:110 (6pp), 2014 December 20

Resonance

For
$$\frac{ck_{\perp}}{\omega_p} > 10^{-2}$$
, $\gamma > 10^3$ and $\theta < 10^{-3}$
The resonance condion: $\frac{ck_{||}}{\omega_p} - 1 = \frac{ck_{\perp}}{\omega_p} \theta$
Let's look at the case of fixed $\frac{ck_{\perp}}{\omega_p}$

For beam angles with θ

The resonance of the waves is

Chang et al. The Astrophysical Journal, 833:118 (12pp), 2016 December 10

Injection simulation

With Injection

2D analysis of diffusion equation

The other term is relevant here

Not the same case for higher Lorentz factors

Angular widening dominate for larger Lorentz factors

Perry and Lyubarsky (2021)

Significant beam broadening yields instability suppression

Old Collisional damping with Injection

