# The environmental impact of the ISIS-II Neutron and Muon Source

Dr. Hannah Wakeling

Seminar at DESY

22nd January 2024







Science and Technology Facilities Council

ISIS Neutron and Muon Source

#### **Overview**

- 1) The intersection of physics and the Climate Crisis
- 2) The ISIS-II Neutron and Muon Source
- 3) Environmental Impact & Life Cycle Assessment of ISIS-II
  - o Methodology
  - Preliminary Results

#### The Climate Crisis is not going away

Why do we as physicists, engineers, researchers, etc. need to care?

- Moral and social duty to lead by example.
- Publicly funded.

What do we really mean by environmental impact and "sustainability"?

- Sustainability is <u>"a social goal for people to co-exist on Earth over</u> <u>a long time."</u>
- How does this actually relate to the field of physics?

← Instagram ™ fakenewsnetwork





Instagram: @fakenewsnetwork

8 November

• And more...

### The environmental impact of particle accelerators

Large accelerator facilities are generally <u>unsustainable</u>:

- resource consumptive, and
- next generations aim to grow in size and/or power, and therefore (generally) consumption.

Many efforts ongoing around the world:

- Carbon emissions and impact reports,
- R&D for increased efficiency of machines (klystrons, cryo., etc.),
- Reduction in resource consumption (helium, etc.),
- Sustainability guidelines,
- Air-travel reduction,







#### The ISIS-II Neutron and Muon Source





#### The ISIS Spallation Neutron and Muon Source

- ISIS is the UK's two target, pulsed spallation source that produces world leading science.
- Based at the STFC Rutherford Appleton • Laboratory (RAL), Oxfordshire, UK.
- This year, ISIS marks it's 40th year anniversary since neutrons!



## High repetition rate target options

- New 30 Hz 1.6 MW target station.
- High resolution
  - Same or better resolution as current TS1 at ISIS.
- Expect gains to be proportional to power.
- Decoupled water and hydrogen moderators.
- Flux gain of 10 over current TS1 at same resolution.



Thanks to Dr. John Thomason for these slides. January 2024 | Dr. H. M. Wakeling

#### Low repetition rate target options

- TS2 15 Hz 0.8MW.
- TS2 would focus on cold neutrons and high brightness.
- The preliminary concept looks a lot like SNS Second Target Station, ORNL.
- Flux gain of 70-100.
- There are several options for muon production, such as intermediate targets or standalone stopping targets.



### ISIS-II project phase 1.2b plan

- Construction of a small FFA test ring on the end of the Front End Test Stand (FETS) at RAL in order to explore the beam dynamics fully.
- Completion of compression ring designs.
- Linear accelerator design integrated with choice of pulse compression ring.
- Completion of target, moderator and shielding design for high and low repetition rate neutron targets and a muon target.
- Production of an optimal concept design with credible initial cost estimates.



Science and Technology Facilities Council

#### Proposal of ISIS-II FFA drawing.



Thanks to Dr. John Thomason for these slides. January 2024 | Dr. H. M. Wakeling

#### What might ISIS-II look like?





Proposal of ISIS-II "Green Field" location at RAL

Thanks to Dr. John Thomason for these slides. January 2024 | Dr. H. M. Wakeling The environmental impact and Life Cycle Assessment of ISIS-II

#### What do we hope to achieve?

- To inform ISIS-II design options.
- To report on the full lifetime environmental impact expected at ISIS-II.
- To identify hotspots of environmental impact to allow focus to reduce these impacts.
- To help develop a methodology that can be used by other future facilities.

#### Methodology

How can we achieve that?

Two key stages to this analysis:

- 1. Core components of ISIS-II and an estimation of their environmental impact through modelling and simulation.
- 2. (Simplified) Life Cycle Assessment (LCA)
  - to compare the compression ring options for ISIS-II, to inform ISIS-II phase 1.2b bid





## A first look at the environmental impact of ISIS-II

#### Disclaimer:

- Assumptions, assumptions, assumptions!
- Models updated very regularly.
- Studies ongoing and future studies to come!



## **ISIS-II** Components

(many of the most common components of accelerators)

- Source and pre-injector
- Acceleration:
  - o LINAC
  - Compression Ring (Options)
- Extraction: Extraction Proton Beamlines (EPBs)
- Collision: Target(s)
- Measurements: Instruments
- Ancillaries

## Ion Source and pre-injector

- Assuming ISIS H- Penning ion source
- Modelled using Front End Test Stand (FETS) at RAL

Example: machining of materials potentially optimizable

- FETS RFQ
- 16 blocks of oxygen-free copper totalling 4 tonnes
- Machined to16 vanes: 8 major (80kg ea), 8 minor (20kg ea)
- 3.2 tonnes of copper, i.e. 80%, wasted.
  - Swarf and off cuts were recycled via commercial metal recycling.



#### LINAC

- Low energy linac with RCS
- Low energy linac with FFA
- Full energy linac with AR
- Fall back option: 180 MeV linac upgrade to ISIS
- Modelled using ISIS-II expectation and ancillaries used worldwide (SNS, ESS,...)



LINAC design proposal.



## Compression rings (options)

A first look at environmental impacts is underway.

Lattice magnet design differs in AC and DC currents therefore power distribution varies between a RCS and AR, however total power consumption will be similar.

Options will be considered in depth in LCA in the near future.



#### 🕀 🛃 EPB Quadrupole 30 58 Designs for ISIS-II are in progress and models will be • updated when available.

## Extraction Proton Beamlines (EPBs)

The EPBs design is modelled using the SNS Ring to Target Transport ٠ Line (RTBT) design.



20







EPB shielding proposal.



#### **Targets**

- TS1: water and H-decoupled moderators
- TS2: top pancake H, bottom H rods.
- Current design suggestions either
  - Target Station basically a copy of ISIS or
  - ~1 MW target station (similar to SNS STS).
- Important consideration here is the target material, radiation damage and replacement rate of the target.



#### Instruments

- ISIS-II is proposed to host 26 potentially 40 instruments (by ~10 year mark).
- STFC recently succeeded in gaining funding for the Endeavour program at RAL.
   Endeavour instruments and ESS instruments are state-of-the-art and are not expected to change significantly in technology over the construction timescale of ISIS-II.
  - Therefore, these can be used as a model for instrument impacts.
- One model for neutron (HRPD-X) and one for muon (SuperMuSR) instruments due to differences in construction.
- Cherry-pick the more usual components.
- ISIS instrument and laboratory gas consumption each year recorded through gas canister orders used as a first estimate.
- How do we expect the data rates to change? How will ISIS-II data scale compare to, say, CERN/ESS?

#### Ancillaries

- Such as Klystrons, power sources, etc.
- Are being modelled individually using information from suppliers where possible,
- Where not possible, estimations will be made using existing facilities (SNS, ESS, ...)
- Studies will be performed to determine optimal ancillaries in terms of environmental impact.
- These can then be considered in design stages.

#### **Construction: Concrete**

One of the largest expected environmental impacts is of the use of concrete in construction of ISIS-II. At this stage in the analysis, it is expected that emissions of CO2e are expected to be of a similar order of magnitude of the power consumption of ISIS-II over its entire lifetime!

Thus efforts are ongoing to evaluate the potential for the use of more environmentally friendly materials.

24

#### **Operation:** Power

A first estimation of the emissions of CO2e due to the power consumption of ISIS-II over its lifetime.

| Power            | Big Science Scheme |                          |  |
|------------------|--------------------|--------------------------|--|
|                  | [MVA]              | Lifetime CO2e<br>[tCO2e] |  |
| Target Station 1 | 1.5                | 30,156                   |  |
| Target Station 2 | 1.5                | 30,156                   |  |
| Support Office   | 0.5                | 10,052                   |  |
| Synchrotron      | 6                  | 120,625                  |  |
| LINAC            | 8                  | 160,834                  |  |
| Cryogenics       | 4                  | 80,417                   |  |
| Spare Capacity   | 8.5                | 170,886                  |  |
| TOTAL            | 30                 | 603,126                  |  |



**Big Science Scheme** 

The power values are assumed to reflect the predicted beam on/off ratio of ISIS-II and present the 60-year operational lifetime CO2e impact of ISIS-II, including current predicted "decarbonization of the UK grid" estimates.

25

## **Operation: Power (Computing)**

The emissions of CO2e due to the power consumption and materials use of computing of ISIS-II over its lifetime is in the process of being modelled.

It is expected that the computing requirements compared to ISIS will be much larger.

Estimation work is ongoing, but it - as one of the largest power consumers in High Energy Physics - deserved a mention!





#### **Operation: Local travel**

Using ISIS local transport data, a first "back of envelope" calculation is performed (i.e. high level of uncertainty)

#### Assumptions:

- 2026 estimates of staff modes of travel and distance travelled,
- 2022 percentages of onsite staff per day,
- 2050 estimates of public transit decarbonisation, and guesstimate of 2050 car emissions.

ISIS and ISIS-II permanent staff predictions: Now: ~ 580 staff 2024-28: ~ 640 staff 2028-32: ~ 700 staff 2032-45: ~ 1050 staff 2045-2100: ~ 700 staff

A first estimation expects



for the lifetime of ISIS-II.



#### January 2024 | Dr. H. M. Wakeling

### Operation: User travel (national and international)

Using ISIS user transport data, a first "back of envelope" calculation is performed (i.e. high level of uncertainty)

#### Assumptions:

 25% of users are international: Italy, The Netherlands, Sweden, Japan.

#### A first estimation expects:

~2.4 ktCO<sub>2</sub>

Emitted by national users through travel ISIS and ISIS-II user predictions:
Now: ~ 3500 visitors per annum
2040+: ~3500 visitors per annum

~2.2 ktCO<sub>2</sub>

Emitted by international users through travel





#### Decommissioning

- ISIS-II decommissioning 2100 2170 (decay storage limit of 70 years).
- Estimation of the radioactive waste at ISIS-II will be modelled using:
  - $\circ~$  the ISIS radioactive waste and disposal records,
  - Plans for ISIS decommissioning (2045-2090)
  - o expected radioactive waste at ISIS-II,
  - o other facilities of higher beam energy's estimations of waste (ESS).
- Highly dependent on country.

## A first look at specific areas of environmental impact of ISIS-II

| Area                            | Estimated carbon<br>emissions from power<br>consumption [ktCO <sub>2</sub> e] | Estimated embodied<br>carbon from buildings<br>[ktCO <sub>2</sub> e] | Estimated carbon<br>emissions from<br>tunnelling<br>[ktCO₂e] | Estimated carbon<br>emissions from<br>shielding materials<br>[ktCO <sub>2</sub> e] |
|---------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|
| Target Station 1                | 30                                                                            |                                                                      |                                                              | ~15                                                                                |
| Target Station 2                | 30                                                                            |                                                                      |                                                              | ~15                                                                                |
| Support Office                  | 10                                                                            |                                                                      |                                                              | -                                                                                  |
| Synchrotron                     | 120                                                                           |                                                                      |                                                              | ~10                                                                                |
| LINAC                           | 160                                                                           |                                                                      | ~10                                                          | ~40                                                                                |
| Cryogenics                      | 80                                                                            |                                                                      |                                                              | -                                                                                  |
| Spare Capacity                  | 170                                                                           |                                                                      |                                                              | -                                                                                  |
| Other (inc. support hall, EPBs) | _                                                                             |                                                                      |                                                              | ~150                                                                               |
| TOTAL                           | ~600                                                                          | ~100                                                                 | TBC + ~10                                                    | ~230                                                                               |

NB: More studies ongoing and to come!

#### **Overall environmental impact of ISIS-II**

|                               | and the second |      |          |             |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|------|----------|-------------|
|                               | Quantity                                                                                                         | Unit | £/rate   | £ Total     |
| Demolition and Site Clearance |                                                                                                                  |      | ·        |             |
| Site strip and levelling      | 151,700                                                                                                          | m2   | 30.0     | 4,550,000   |
| Disposal                      | 151,700                                                                                                          | m2   | 50.0     | 7,590,000   |
| Mounding to new structure     | 53,550                                                                                                           | m2   | 90.0     | 4,820,000   |
| Dub intel                     | 151 707                                                                                                          |      | 111.0    | 16 960 000  |
| Sub-total                     | 131,70                                                                                                           |      | 111.0    | 10,300,000  |
| Linac and transfer tunnels    |                                                                                                                  |      |          |             |
| Linac Tunnel                  | ,455                                                                                                             | m2   | 6,935.5  | 127,995,000 |
| Beam Transfer                 | 7,470                                                                                                            | m2   | 13,332.3 | 99,592,300  |
| MEP - Linac                   | 18,455                                                                                                           | m2   | 1,664.5  | 30,717,690  |
| Sub-total                     | GIA 18,455                                                                                                       | m2   | 13,996.5 | 258,304,990 |
| Synchotron                    |                                                                                                                  |      |          |             |
| Synchotron                    | 9,850                                                                                                            | m2   | 14,999.3 | 147,742,800 |
| MEP - Synchotron              | 9,850                                                                                                            | m2   | 1,263.3  | 12,443,629  |
| Sub-total                     | 9.850                                                                                                            | m2   | 16 262 6 | 160 186 429 |

| Element          | Electrical Allowances [MVA] |                                  |  |  |  |
|------------------|-----------------------------|----------------------------------|--|--|--|
|                  | Big Science Scheme          | $180\mathrm{MeV}\mathbf{Scheme}$ |  |  |  |
| Target Station 1 | 1.5                         | 1.5                              |  |  |  |
| Target Station 2 | 1.5                         | N/A                              |  |  |  |
| Support office   | 0.5                         | N/A                              |  |  |  |
| Synchrotron      | 6                           | As existing                      |  |  |  |
| LINAC            | .5                          | 2                                |  |  |  |
| Cryogenics       | 4                           | 2                                |  |  |  |
| Spare Capacity   | 3                           | 1                                |  |  |  |
| Total            | 24.5                        | 6                                |  |  |  |
|                  |                             |                                  |  |  |  |



Construction

Operation

#### Decommissioning

## What's next?

## Life Cycle Assessment of ISIS-II

Life Cycle Assessment/Analysis (LCA):



LCA steps.

#### Goal & Scope

#### Goal

• To evaluate and inform the design of ISIS-II with a comparison of the options available for the compression rings of ISIS-II.

#### Scope

- The 4 ring design options of ISIS-II:
  - RCS (low energy LINAC)
  - FFA (low energy LINAC)
  - AR (full energy LINAC)
  - $\circ~$  Fall back option: 180 MeV LINAC upgrade to ISIS
- Initially CO<sub>2</sub>e is used as assessment parameter but other environmental impacts will not be ignored and not deemed negligible for the comparison.
- Currently the functional unit is "ISIS-II", with the view to investigate updating this in the future to, e.g., "user hours".



#### **Inventory Analysis**

Data collection and quality control:

- Construction
- Facility
- Machine
- Shielding
- Computing
- Location
- Operation/Active life
- Energy consumption
- Resource consumption inc. leakage
- Failure likelihoods/risks inc. replacement/repair
- Decommissioning
- Storage of radioactive materials

Input (resources, materials, semi-products, products) vs. Output

(emissions, waste, valuable products)



### **Impact Assessment**



A. ConstructionB. OperationC. Decommissioning

- Following the EN 17472:2022 standard as a basis.
- Using the ReCiPE:2016 Midpoint (H) Life Cycle Impact Assessment Method.
- Using openLCA with the Idemat database (currently, fluid, incomplete database for study)
  - One good outcome of this: naturally creates a database with key particle accelerator components such as magnets.

#### **Summary and Conclusion**

- Understanding and reducing the environmental impact of fundamental research is necessary.
- ISIS-II is the next proposed upgrade to the ISIS Neutron and Muon Source facility in the UK.
- To evaluate the environmental impact of ISIS-II, an impact analysis is well underway.
- To inform the design options for ISIS-II and the next funding bid, a Life Cycle Assessment will be performed.

## Thank you for your attention, questions welcome!

hannah.wakeling@physics.ox.ac.uk



ISIS Neutron and Muon Source www.isis.stfc.ac.uk

X (o)

www.adams-institute.ac.uk





@isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

www.physics.ox.ac.uk

s.ox.ac.uk

#### Additional resources for interest

**HECAP+** Document



ISIS Neutron and Muon Source www.isis.stfc.ac.uk

X (O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source



www.physics.ox.ac.uk

www.adams-institute.ac.uk





## Operation: a comparison of warm LINAC and SC LINAC (From A. Letchford's efforts)



Aurora Energy Research CO<sub>2</sub> emissions

 $[t CO_2/kWh]$  $1.415 \times 10^{-4}$ 

 $8.51 \times 10^{-5}$  $6.36 \times 10^{-5}$ 

 $3.32 \times 10^{-5}$ 

Year

2020

2030

2040

2050

#### January 2024 | Dr. H. M. Wakeling

#### **Decommission: Radiation**

Would the use of Zepto-magnets have an increased radiation impact due to the large use of Neodymuim?

- Perhaps not a bad as originally feared.
- Ability to recycle (and the corresponding decay storage time needed) will be sensitive to the Co-60 activity with a halflife of ~5 years, just as it is with conventional electromagnets.

NB: The only way to accurately know what will form in a magnet is to model it properly with activation codes.

