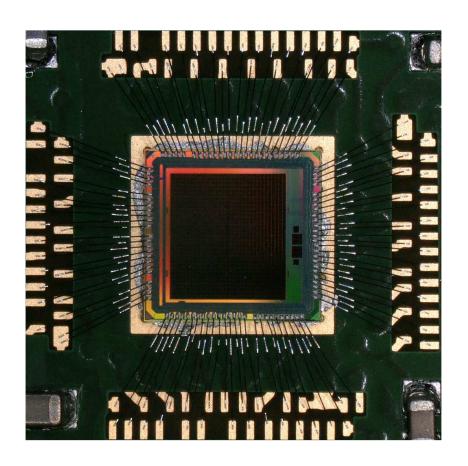
Design of a monolithic digital SiPM-IC in 150-nm CMOS technology

In house-design

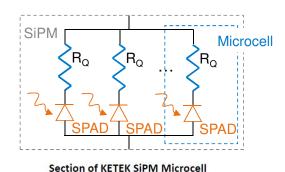
Presentation for the retreat of the detector platform


Inge Diehl, Karsten Hansen, Tomas Vanat, Gianpiero Vignola, Finn Feindt, Stephan Lachnit, Daniil Rastorguev, and Simon Spannagel

Hamburg, 19th Jan. 2024

Outline

- Introduction to Silicon photomultipliers
 - What are SiPMs?
 - Why going to "digital"?
- DESY's 32-by-32-pixel digital SiPM-IC
 - Features
 - Circuit blocks description and characterization
- Lab measurements
 - With Caribou DAQ system
 - With laser source
 - In dark environment
- Conclusion



Silicon photomultipliers (SiPM)

What are SiPMs?

- SiPMs are solid-state single-photon-sensitive devices based on single-photon avalanche diodes (SPADs)
 implemented on common silicon substrate.
- Each SPAD is biased above breakdown voltage and operates in Geiger mode with typical gain of 10⁵ to 10⁶.

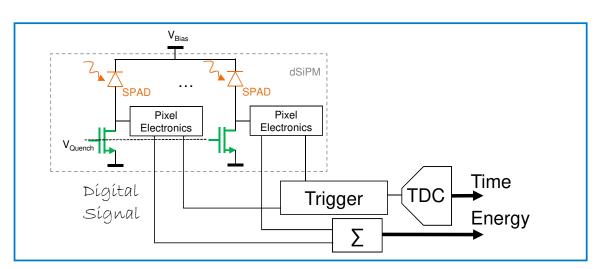
Analog SiPM

Quenching
Resistor
P*-Window
N - Silicon

- Arrays of many SPADs, each one with its integrated passive-quenching resistor, labeled as microcells
- All microcells connected in parallel to a common anode and cathode
- The output current of the SiPM is the sum of all the cells, giving a signal proportional to the number of detected photons.

SiPMs

Digital SiPMs

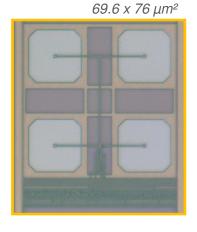

Challenges of "classical" analog SiPMs

- Analog output requires digitization in electronics
- Often sizeable noise rates (typically kHz/mm²)
 - Very often dominated by a few pixels
- No information which pixel was hit

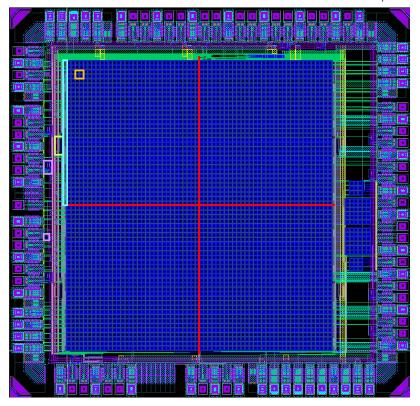
V_{Bias} TDC Time Signal SPAD SPAD SPAD TIME Analog Signal ADC Energy

Possible solution: Digital SiPMs

- Take advantage of SiPMs digital nature
 - · Small quenching circuitry
 - Inverter as event discriminator
- Photon or hit counter, within pixel possible
- Possibility to switch off noisy pixel
- Hit map readout


Overview

Layout


- 32 x 32 pixels (1 pixel = 4 SPADs)
- In LFoundry's 150-nm CMOS technology
- 70-µm pitch

Features

- Full hit matrix readout
- Pixel masking
- Time stamping per quadrant
 - 12-bit TDCs with <100-ps timing resolution
 - Validation logic with adjustable settings
- 1-Gbps LVDS links

ca. 3400 x 3300 µm²

Quadrant block scheme

The IC is divided into four quadrants

- Outputs of all pixels are combined in a wired-OR
- Fastest pixel signal triggers a running 12-bit TDC
- Validation logic to discard undesirable events
- Hit matrix is readout via a 16-to-1 multiplexer
- Frame-based readout

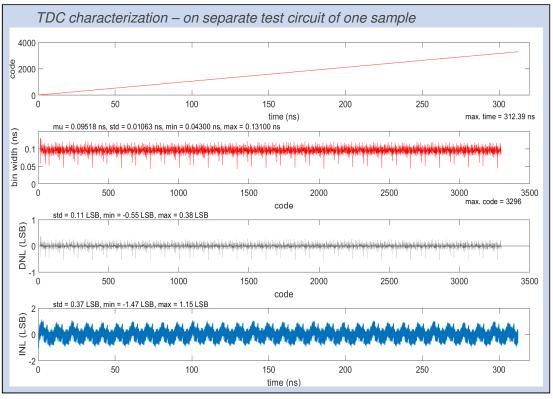
Quadrant 40-bit frame dSiPM 16 x 16 pixel counter $V_{Bias} = V_{BD} + V_{OV} dSiPM$ PADs Validation Serializer Time + TX Trigger 12-bit Pixel network 16... **TDC** ctronics (wired-OR) Pixel V_{Quench} electronics 16:1 MUX + TX Hit matrix $\mathsf{J}_{\mathsf{masking}}$ --- 16 ..

dSiPM pixel electronics

- Common readout of 4 SPADs
- 3.3-V NMOS transistor front end allowing an overvoltage of max. 3.6 V
- Quenching performed by a globally biased transistor
- Inverter as comparator stage for digital pulse shaping
- SRAM cell for masking
- Deadtime: min. 25 ns
- Power: 10 μW
- Area: 400 µm²

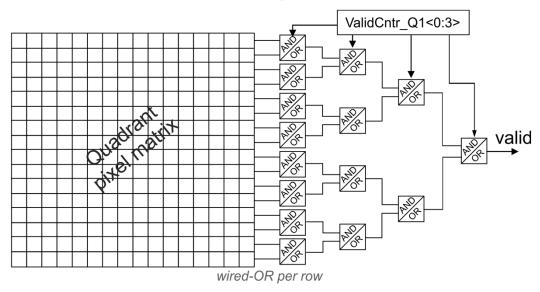
Data rates @ 3-MHz frame clock

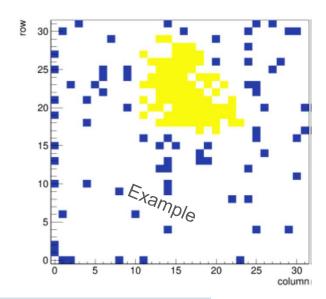
- Hit data: 4 * 816 Mbps
- Timing date: 408 Mbps
- Total sustained data throughput of 4 Gbit/s @ 3-MHz frame rate


Circuit blocks:

Time-to-digital converter

@408 MHz reference clock

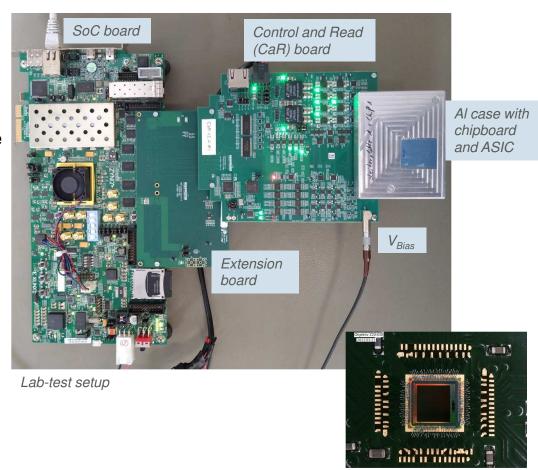

- Time resolution: 95.8 ps, $\sigma = 13.65$ ps
- Bit resolution: 11.67 bit
- Dynamic range: 314 ns
- Max DNL = -0.74/0.35 LSB
- Max INL = -1.43/1.39 LSB
- Power: 11 mW @1.8 V
- Area: 78 x 157 μm²



- Trigger input with step size of 1 ps over entire dynamic range
- Bin width: width of each step → time-stamp signal
- DNL: deviation of each bin width to the average value
- INL: deviation to an ideal line fitted into the step curve

Circuit blocks:

Validation logic

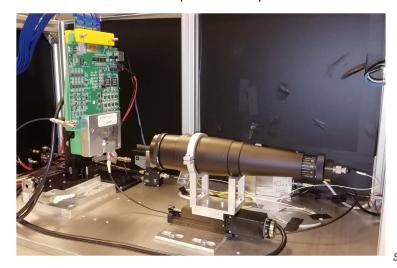

Event validation

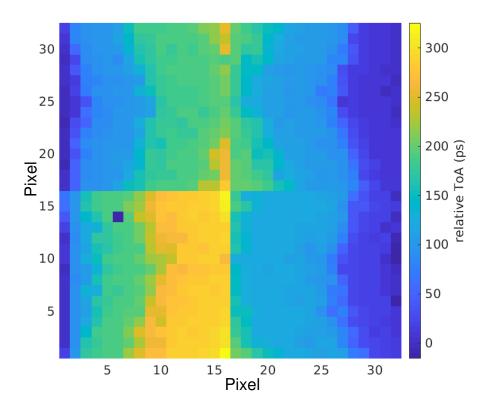
- Four steps
- With each step AND/OR gate configurable
- For cluster identification of simultaneously fired pixel
- For discarding undesirable events

Measurements – in lab

With Caribou DAQ system

- A versatile readout system developed by CERN, BNL, and DESY
- For fast and simple implementation of new detectors
- System on Chip (SoC) Board CPU and FPGA on same die
 - A CPU runs DAQ and control software
 - An FPGA runs custom hardware for data handling and detector control
- Control and Readout (CaR) Interface Board
 - Physical interface from the SoC to the sensor
 - Peripherals needed to interface and run the chip: power supplies, ADCs, voltage/current references, LVDS links, etc.
- Chip Board passive & detector-specific components

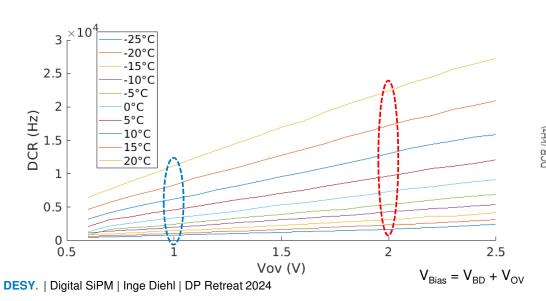

https://doi.org/10.22323/1.370.0100

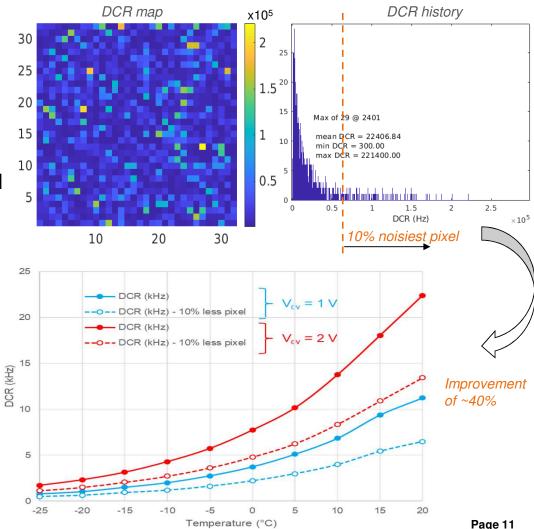

IC on chipboard

Measurements – in lab

Propagation delays

- DUT placed on a x-y stage, laser optical system on a z-stage
- 1054 nm pulsed laser, in sync. with the DAQ clock
- Scan chip pixel-by-pixel
 - Only one pixel enabled and directly illuminated
 - Laser spot diameter of ~0.5 mm
 - ToA store
 - Relative ToA = ToA_{pixel} ToA_{pixel close to TDC}


- Clear function of distance to each TDC
- Max. ~326 ps ± 86 ps


see Daniil's talk: "TCT box: laser box as a user facility"

Measurements – in lab

Dark-count rates

- Thermal generated events in dark conditions
- Strong dependence on temperature and overvoltage
- Dominated by some noisy pixels
 - Pixel masking helps!
- DCR differs from sample to sample, ~25 kHz per pixel at 20°C and V_{ov} = 2 V without masked pixels


Conclusion and outlook

DESY's digital SiPM-IC

- Proof-of-principle:
 - · Successfully demonstrated
 - Process limitations identified
 - Full detector system can be used
 - E.g. in test beam

see Gianpiero's talk: "Test beam-characterization of DESY's digital SiPM-IC"

- Possible improvements:
 - Masking of individual SPAD instead of entire pixel
 - LF 110 CIS → DCR reduction
 - Customized SPAD cell → fill factor reduction
 - Multi-layer arrangements → DCR reduction, tracking, ...

Infos:

- https://doi.org/10.1088/1748-0221/19/01/P01020
- https://indico.cern.ch/event/1184921/contributions/5576923/

Thank you.

Test beam results are coming soon. ©

Contact

Deutsches Elektronen-

Synchrotron DESY

Inge Diehl

FE

Inge.diehl@desy.de

www.desy.de

