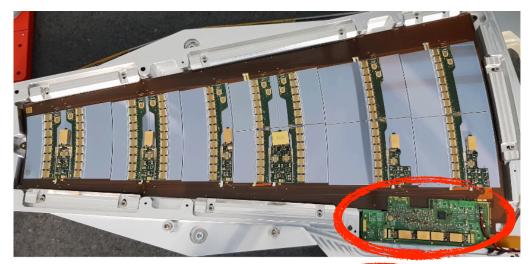

EoS for the ATLAS-ITk-tracker: PCB development for a data multiplexer within a large-scale detector volume

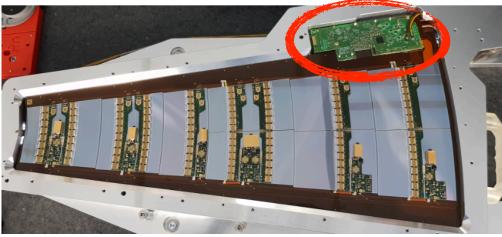
Lukas Bauckhage, Artur Boebel, Harald Ceslik, Mogens Dam, Sergio Diez Cornell, Cameron Garvey, René Stennow Gotfredsen, Peter Goettlicher, Ingrid-Maria Gregor, James Keaveney, Max Van der Merwe, Anders Palmelund, <u>Sara Ruiz Daza</u>, Stefan Schmitt, Marcel Stanitzki, Lars Rickard Strom

The ATLAS ITk

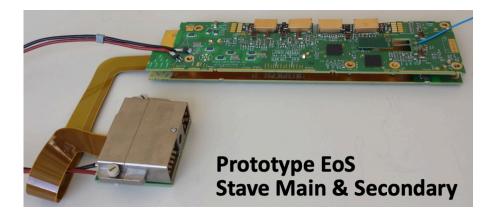
- The Large Hadron Collider will upgrade to High-Luminosity (HL-LHC).
- The ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk):
 - <u>Pixel detector</u> close to the interaction point.
 - <u>Strip tracker</u> consisting of a barrel (built from "staves") and two end-caps (built from "petals").

At the end of each substructure (stave or petal),
 a pair of main-secondary EoS card is placed.

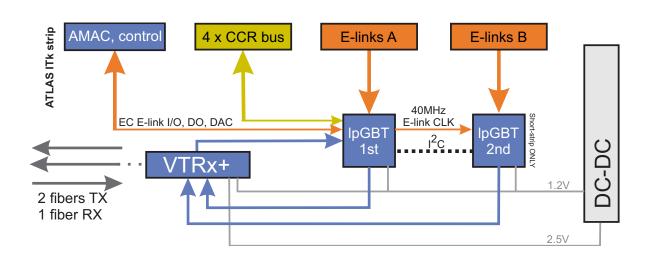

Secondary Eos card

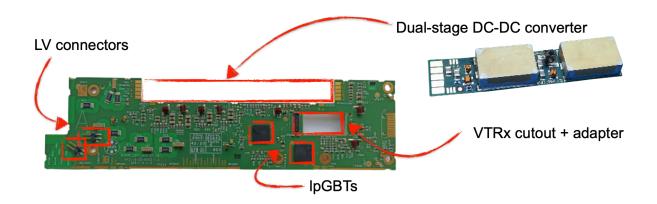

Main Eos card

.. Franconi


The End-Of-Substructure Card (EoS)

- The EoS cards are the gateway between on- and off-detector systems.
 - Supplies LV & HV power
 - Timing, Trigger and Control
 - Detector Control System
 - Send the data off the module




 11 V for the modules, 1.2 V for the lpGBTs, 2.5 V for the VTRx+ → Dedicated dual-stage DC-DC converter.

The End-Of-Substructure Card (EoS)

Based on the CERN ASICs for HL-LHC

- bPOL's, IpGBT, VTRx+

Module Data (E-links)

- Up to 14/28 data links @ 640 Mb/s

1/2 lpGBTs

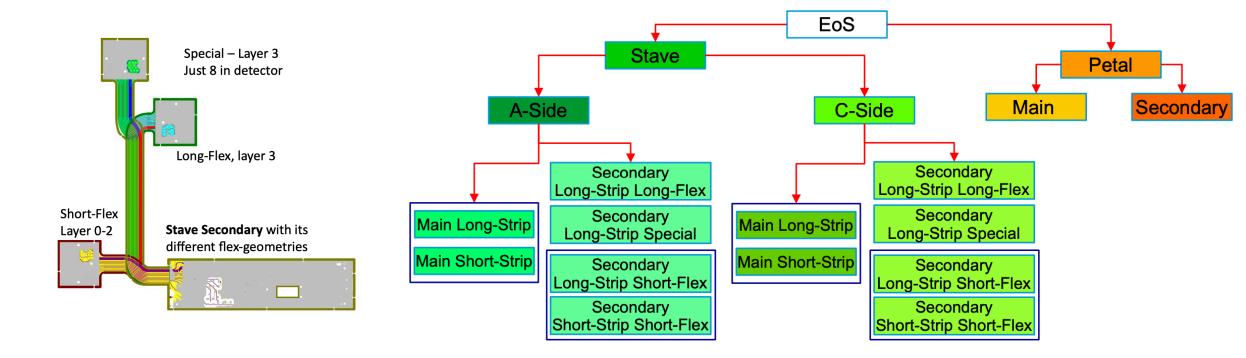
- Multiplex and serialise the data.
- 1st lpGBT acts as I²C Master for 2nd lpGBT.

VTRx+

- Converts electrical signal into optical signals.
- Data send out via optical fibers.

Optical link

- 2 TX fibers @ 10.24 Gb/s each
- 1 RX fiber @ 1.25 Gb/s


Clock, Control & Reset Bus

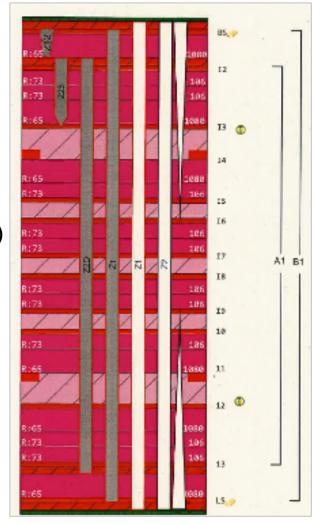
4 fast control links to the modules @ 160 Mb/s

EoS card flavours

- Physical layout of staves/petals
- Different flex lead geometries
- Variants with one/two IpGBTs

→ 14 different EoS flavours

Hierarchical design:


- Configurable and modular blocks → Blocks reused in the different flavours
- Re-assignment of gates and pins → Optimisation of the physical layout

14-layer PCB

- Total thickness < 5 mm (1.8 mm for PCB & 3.2 mm available for components)
- Two layers dedicated to impedance-controlled signals.

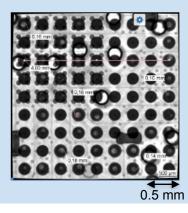
- All the above constraints
- Radiation hardness
- Geometry dimensions
- Fine pitch of 0.5 mm

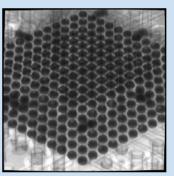
→ Vendor-specific design

PCB Stack up



Testing workflow


- PCB Reception
- Test Coupon Testing



PCB Population@ ZE Department

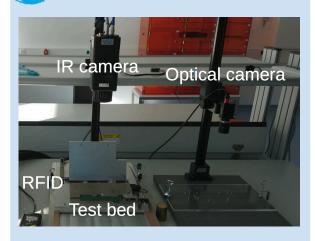
 3D X-Ray of the BGA (ball grid array) at Fraunhofer Institute (Itzehoe)

70 µm trace structures

The EoS project is in the production stage!

• 1552 cards + ~5% spares

Packaging and shipping to assembly sites



 QC (Quality Control) conducted on four test benches at DAF. Basic tests: all the devices on the board must be correctly connected (Flying Prober Tester)

Quality control (QC): 4 test benches @DAF

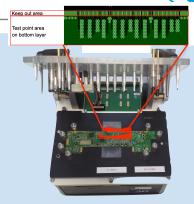
#1

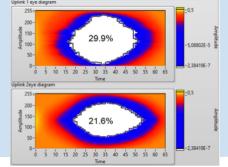
- RFID identification.
- Optical & IR inspections, dimensions, flatness.
- Power consumption.
- ADC value reading.
- Check optical links (up/down).

#2

Thermal stress test

- Cycled 10 times from
 -35°C to 30 °C.
- Power on/off at each cycle.
- Electrical/funcional tests similar to the test bench #1 are repeated.


#3


HV test

- Each HV line is ramped up to 1.1 kV.
- Monitor of the leakage current every 2 seconds for one minute(< 5 nA).

- Electrical test and bit error rate test (BERT)
 - Needle prober: test points on a grid of 0.7 mm near the bonding pads.
 - For all 640 Mb/s fast signals.
 - Error rate < 10-12
- Eye-diagrams of up-links

A decade of EoS & Current status

• The project bas been evolving from 2012/13 to today.

- Moving from GBTx to IpGBT
- Forking more and more variants.
- But basic approach has remained relatively stable.
- Getting the most out of project reviews.

Status:

- Pre-production has been completed EoS being used at all assembly sites
- Production has started.
- Track is being kept in the production database.
- Timeline highly dependent on the capabilities of the manufacturer and the boards requested from the assembly sites.

Summary & Outlook

• EoS Cards Overview:

- Gateway between on- and off-detector systems.
- Connects up to 28 data lines to IpGBT ASICs and VTRx+ module.
- Manages data serialisation and enables 10 Gb/s optical data transmission to off-systems.
- Powered by a dedicated Dual-Stage DC-DC converter.

• Collaboration:

- DESY groups, together with the University of Cape Town and the Niels Bohr Institute.
 - DESY groups: ATLAS, FEA & FEB, FTX and ZE.
- Board population and testing conducted at DESY.

• Current Stage - Production:

- EoS project in the production stage.
- Goal: ~ 2000 cards in 14 different flavours.
- Keep track in the production database.

Summary & Outlook

• EoS Cards Overview:

- Gateway between on- and off-detector systems.
- Connects up to 28 data lines to IpGBT ASICs and VTRx+ module.
- Manages data serialisation and enables 10 Gb/s optical data transmission to off-systems.
- Powered by a dedicated Dual-Stage DC-DC converter.

• Collaboration:

- DESY groups, together with the University of Cape Town and the Niels Bohr Institute.
 - DESY groups: ATLAS, FEA & FEB, FTX and ZE.
- Board population and testing conducted at DESY.

• Current Stage - Production:

- EoS project in the production stage.
- Goal: ~ 2000 cards in 14 different flavours.
- Keep track in the production database. Thank you!

