A resilient feature extractor in SAXS images

6th Round Table on Deep Learning @ DESY

Engin Eren (HI), Philipp Heuser (HI), Erik Thiessenhusen (HZDR), Lingen Huang (HZDR)

Story begins with... Helmholtz Imaging HelpDesk

Experiment

- Goal: understanding laser-solid and laser-plasma interactions + Ion Acceleration
- Simulations for interactions exist \rightarrow need verification

• Sensor only sums up intensity of photons, not phase \rightarrow phase problem

Overview

Solution – A robust Feature Extractor

- Need a feature extractor that works both on simulated and experimental data (and for different targets)
- Features are used to train cINN
- Additional challenge: data imbalance (very few experimental images)
- Available data:
 - SAXS grating data both experimental and simulated (LCLS)
 - SAXS + PCI wire data; experimental data available, simulated data would need some work (EuXFEL, Hibef)

β-VAE: Learning disentangled representations

5

Moving in the latent space...

β-VAE: Results Inference

Latent Space Traversal

Changing 1 variable while keeping others fixed !!!

Manipulation Encoding the image and manipulating the z

Some artefacts are gone! But.. preservation of the signal quality is not achieved

SAXS + Wire @ European XFEL 10-μm Cu Wire

11

β-VAE: Reconstruction quality

β-VAE: Get the Latent Space

After training the β -VAE, need to construct the latent space

β-VAE: Manipulation

How can we move in our **z** in the direction of **no-artefact** space ?

Running on local URL: http://127.0.0.1:7860 Running on public URL: https://47787e1c13e6fa8a69.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, spaces)

Default values these z's are: -0.02007344365119934 -0.3955821394920349 -0.6009646058082581 -0.5929316282272339 0.8053598403930664 Default values these z's are: -0.02007344365119934 -0.3955821394920349 -0.6009646058082581 -0.5929316282272339 0.8053598403930664

q [nm-1]

q [nm-1]

More information

More information

Beta-VAE with EuXFEL wire data

The project consists of two main parts, each responsible for a specific task.

start

The start step:

compute_runs_preshot

get data --> preshots

Join our parallel branches and merge results into a dictionary.

join

end

End the flow.

start

Part 1: Creating Training Data

To create the training data, follow these steps:

python flowXFELwire.py run --outputF 'demo.hdf5'

METAFLOW	XfelWireFlow/1691064082765476/start/1 Task Metadata	
Task Info	Task Created On	2023-08-03 02:01:22 PM
Task Metadata	Task Finished On	2023-08-03 02:01:30 PM
Flow Parameters	Task Duration	0:00:07
Artifacts	Tags	python_version:3.10.9, user:eren, runtime:dev, metaflow_
DAG	User	eren

Part 2: Starting Training

To start the training process, you need to modify the flowXFELwire.py file as follows:

X xfel-saxs-wire⊕ Project ID: 7809 [t]		
16 Commits 🖇 1 Branch 🛷 0 Ta	ags 🛛 🗔 317 KiB Project Storage	
main README Engin Eren authored 4 month	is ago	
main ~ xfel-saxs-wire / + ~	/ Hi	story
		+ Ena
README Add LICENSE	Add CHANGELOG Add CONTRIBUTING	
(H Add CHANGELOG H Add CONTRIBUTING t up CI/CD H Add Wiki I I Configure Integration	,
(,
Add Kubernetes cluster	t up CI/CD 🛛 [➡ Add Wiki] [⑫ Configure Integration	,
 Add Kubernetes cluster	t up CI/CD I I Add Wiki I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	,

https://gitlab.desy.de/ric/helmholtz_imaging/xfel-saxs-wire

DESY.

Backup

β-VAE: Latent Space Manipulation Batch-wise

Take a subset of 200 images with obvious artefacts

β-VAE: Latent Space

Distribution of Latent variables

5 latent variables are responsible for artefacts + signal ??