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Developing a LLM for Particle Accelerators

> Source books, conference
proceedings, and arxiv preprints as
PDFs.

> Training a LLM without a human in
the loop.

DESY.
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addressing accelerator questions,
validated by experts. Our approach shows adapts e models to scientific
domains by fine-tuning technical texts and auto-generated corpora capturing the
latest developments e produce pre-trained models to answer some specifi
questions that commercially available assistants ¢
assistants for individual facilities
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European

XFEL have?
Ours: European XFEL has a total of 800 superconducting radio frequency

(SRF) cavities. partially correct (808)
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?

Ours: European XFEL has a total of 800 superconducting radio frequency
(SRF) cavities. partially correct (808)

falcon-180b: The European XFEL has a total of 16 superconducting
radio-frequency (SRF) cavity stations that contain approximately 170
individual SRF cavities... wrong
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LLM - Example

How many superconducting radio frequency (SRF) cavities does European
XFEL have?

Ours: European XFEL has a total of 800 superconducting radio frequency
(SRF) cavities. partially correct (808)

falcon-180b: The European XFEL has a total of 16 superconducting
radio-frequency (SRF) cavity stations that contain approximately 170
individual SRF cavities... wrong

ChatGPT: As of my last knowledge update in September 2021, the European
XFEL (X-ray Free-Electron Laser) facility had a total of 100
superconducting radiofrequency (SRF) cavities. wrong
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LLM - Future - Multimodality

Human How should | make something like this?

DESY.
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LLM - Future - Multimodality

MiniGPT-4 To make this dish, you will need the following ingredients:
No Q-Former
* 4 large live lobsters
* 2 tablespoons olive oil
* Salt and pepper
* 2 cloves garlic, minced
* 1lemon, juiced
* 1 tablespoon chopped fresh parsley

Here's how to make it:

Human How should | make something like this?
1. Preheat your oven to 425°F (220°C).
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Potential/Future Steps

> Improve our logbook (root-cause analysis, automated problem solving etc.).
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Potential/Future Steps

\"

Improve our logbook (root-cause analysis, automated problem solving etc.).

\"

Automate some procedures (writing logbook entries, writing documents,
documentations)

\"/

Assessment (of documents).
Can improve the FAIR-ness.’
And who knows what future holds?

\"

\"
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Observation: Sometimes it works to
just wait.
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Log Anomaly Detection

>

DESY.

Log anomaly detection using word
embeddings and Hidden Markov
Models (HMMs have a very few
parameters!).

LOG ANOMALY DETECTION ON EUXFEL NODES

A. Sulc*, A. Eichler, T. Wilksen, DESY, Hamburg, Germany

Abstract

This article introduces a method to detect anomalies in the
log data generated by control system nodes at the European
XFEL accelerator. The primary aim of this proposed method
s to provide op: a ing of the
availability, status, and problems specific to each node. This
information is vital for ensuring the smooth operation. The
sequential nature of logs and the absence of a rich text cor-
pus that is specific to our nodes poses significant limitations
for traditional and learning-based approaches for anomaly
detection. To overcome this limitation, we propose a method
that uses word embedding and models individual nodes as
a sequence of these vectors that commonly co-oceur, using
a Hidden Markov Model (HMM). We score individual log
entries by computing a probability ratio between the proba-
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to mitigate potential problems from arising. Monitoring the
logs of the watchdog nodes by textual analysis of their logs
not only provides an automated means of comprehending
the European XFEL accelerator system conditions but also
enables early detection and resolution of issues that would
otherwise only gain significance in the event of a specific
node failure.

The structure of the paper is the following: First, we
summarize the related work in log anomaly detection. In
the next section, we show four main steps of our approach
with important justifications and examples. Lastly, we show
several examples and sketch a potential future work in this
field.
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Log Anomaly Detection

> Log anomaly detection using word
embeddings and Hidden Markov
Models (HMMs have a very few
parameters!).

> Represents logs as vectors
(Word2Vec), and models their
representations as HMMs.

> Scores entries by probability ratio to
detect anomalies (how well is the
message fitting to the sequence).

> Tested on EuXFEL logs, identifies
score spikes corresponding to errors.
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Log Anomaly Detection
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Log Anomaly Detection
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Sequential Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Unexpected Message Anomaly

(TEST,OK, TEST,OK,TEST,OK,TEST,ERROR)

DESY. | Potental Uses of (Large) Language Models for DESY | Antonin Sulc, Annika Eichler, Tim Wilksen | Hamburg, Page 11


http://creativecommons.org/licenses/by/4.0/

Log Anomaly Detection - Unexpected Message Anomaly
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Log Anomaly Detection - Real Example

140] — score s

--=- average §

0 getpid no process 120

1  no process try start 100

2 getpid no process o 80

3  getpid no process 8 60

4 no process try start 0

5 getpid no process

6 no process try start 2

7 o process try start 0

8 pld Change $nZ $[lZ 01234 GE(\SIE':'KS(Ing:LL::;SI'HS\GJT]S
9 getpid pid not match process name 150

10 pid change $nz $nz 125~ of ol st

11 getpid pid not match process name 0

12 pid change $nz $nz _F

13 pid change $nz $nz « :J

14 pid not match process name toggled $nz times $nz min 53; »

15 pid not match process name toggled $nz times $nz min » N\"

16 signal term received 0

17 terminating threads closing files - VU y

18 writer thread terminated —50

19 interrupt thread terminated 0 10 20 30 40 50 60 70

Event (log entry)
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Log Anomaly Detection

from hmmlearn import hmm
import numpy as np

x = np.stack([[o,1],[1,0],[®,1],[1,0],[0®,1],[21,0]1,[0,1],[2,0]1)
model = hmm.GaussianHMM(n_components=2, covariance_type="diag")
model.fit(x[:-1,:])
logp = []
for i in range(1, x.shape[0]+1):

logp.append(model.score(x[:1]))

logp = np.array(logp)
score = logp[:-1] - logp[1:]
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Rule 2: Follow formatting rules and
notation if you want to get your work
recognized.
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Thank you!

Contact

Antonin Sulc, Annika Eichler, Tim Wilksen
0000-0001-7767-778X

MCS

antonin.sulc@desy.de

Deutsches Elektronen-
Synchrotron DESY

www.desy.de
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