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2 Motivation: Why CMS care about efficiency

● CMS workflow 


■ strong memory constrained:  ≈2GB per cpu core


● Many production models already implemented


■ e.g. DeepJet, DeepMET, DeepTau (50-100 MB each)  and even more in the pipeline! 

● Naive solutions 


■ buy more hardware 


■ deploy only "important" models


■ more efficient deployment of models (Focus of this talk)

In Summary: its getting crowded



3 Overview: Different ways to run Tensorflow (TF) models

AOT

CPU CPU, GPU

shown today

JS

CPU, GPU

normal TF

 usage

activated using

XLA Flags

XLA ="Accelerated Linear Algebra"

AOT = "Ahead of time", 

compile code at build time into 
system dependent binary

Focus of this talk: (left/green path)

deploy TF models using XLA and AOT on CPU 



4 How TensorFlow operates in graph mode

● TF generates a data flow graph representing the ML model


● Graphs consist out of kernel and edges


■ Kernel represent operations (Add, MatMul, Conv2D, …)


▻ TF runtime, called session, executes graph kernel


▻ Operation kernels are written in C++ for CPU or CUDA for GPU


■ Edges represent data flowing (Tensors, control dependencies, resource handles, …)


 
 
 

● Beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT)

Example of a 1-layer network


matmul

softmax

examples

weights

labels

biases ReLuadd



5 What does XLA and AOT do?

Enables several types of graph optimizations


● On graph level:


■ kernel fusion (main speed benefit)


■ Buffer analysis for allocating runtime memory 
(eliminates intermediate caches)


■ Common subexpression elimination


■ Pruning of unused kernel 


● On hardware level:


■ TPU, GPU or CPU (different backends)


● Universal: JAX, PyTorch and ONNX use XLA

● Converts graphs into self-contained library  
(header-object-pair)


■ Graph becomes series of compute kernels in C++


■ No need to load TensorFlow


AOT

my_graph
(TF saved model,
default in TF2)

my_graph.h

my_graph.o
+ AOT

Input Output

https://arxiv.org/pdf/2301.13062.pdf


6 AOT Compilation workflow summary

Step 2: Tensorflow Optimization Step 3: XLA Optimization

save model with fixed batch size

(static memory layout)

MetaOptimizer

Step 1: Prepare graph

Step 4: AOT compiled using TF "saved_model_cli" tool

XLA_optizmized  
static my_graph

my_graph.h

my_graph.o
AOT

Final OutputInput

optimization level 

configurable

matmul

softmax

examples

weights

labels

biases ReLuadd

optimization level 

configurable



CPU runtime and Memory Study



8 Performance study outline

Network and payload


● Created several feed-forward toy models


■ 12/25 layers, 128/256 units, batch-norm and SELU activation


1. CPU runtime tests performed on login-node with CMSSW:


■ Compared forward pass runtime of TF C++ vs. AOT in 1 SingleThread scenario 


■ inputs of the network are random values 


■ Averaged runtimes over 500 calls, after 100 "warm up" calls (to eliminate caching effects)


■ Tested event forward time for different batch sizes


2. Memory tests using MemoryProfiler (IgProf)


3. Development of batching strategies for different scenarios and compare CPU runtime

                                   (not shown (due ⏱): study can be found here)

...
...

...
...

https://igprof.org/
https://indico.cern.ch/event/1267596/contributions/5361721/attachments/2634168/4556551/2023-04-24_bogdan_mlprod_inference_strategies.pdf


9 CPU performance

● big batch sizes can be vectorised (decrease of time per event, till reaching saturation)


● In vectorised regime: TF slightly better than AOT


● Single batch: AOT is always better than TF


● overall comparable performance between C++ TF and AOT


■ default XLA optimizations applied ➡︎ bare minimum 

L = # Layer
N = # Nodes

dotted = TF
solid = AOT

(Link: cpu performance study) 

https://indico.cern.ch/event/1132810/contributions/4857985/attachments/2449093/4196876/2022-05-23_bogdan_mlprod.pdf


10

Memory usage comparison 

between 12 and 25 layers networks

Memory reservation comparison

AOT reserve ...


● only once its models weights (*.o file)


● every time buffer for input, output and 
intermediate layer (scales with batch size)


TF reserve ...

• only once its graph=(models weights + meta data)


• every time its session=(runtime enviroment) 


• every time buffer for input and output  
(not included here)


In comparions:


● AOT size by factor 10 smaller than TF


■ e.g. DeepTau would be 10 MB instead of 100MB


● AOT scales great with number of loaded models


■ barely seeable slope


● AOT fully independent of TensorFlow 
at runtime, saves ∼300 MBs on top


■ saves also 1 min of loading TF

AOT

(Link: memory study) 

https://indico.cern.ch/event/1180977/#4-updates-of-ahead-of-time-com


Limits of AOT compilation



12 When does AOT compilation fail?

Possible reasons to fail AOT compilation:


1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)


➡ known model affected by this: LSTMs without padding


2. No existing TF XLA implementation of the kernel 


‣ frequent checking: more XLA kernels added with each TF update
example: 

AOT compatibility of 

feed-forward network for old TF v. 1.4

network is not 
AOT compatible

Created tool to check 

if models op nodes 


has XLA implementation

(Link: compatiblity study) 

https://indico.cern.ch/event/1219738/contributions/5154212/attachments/2555559/4403617/2022-11-28_bogdan_mlprod.pdf


13 Summary

What was done:


● shown new compilation and deployment method for Tensorflow graphs


● showed that AOT is on average comparable fast as TF C++ models


■ AOT open gates to more optimization with different XLA level


● AOT memory footprint of models is about factor 10 smaller than TF


Your turn with AOT:


● Dev tool to check model compatibility (here)


● Dev tools for preparation and compilation (here)


● Example for compilation without helper tools and basic use (here)


● Recommended usage: Use an wrapper made by us (here) 


■ wrapper takes care of:


▻ dynamic types


▻ emulation of batch sizes


▻ pointer handling

https://github.com/cms-ml/cmsml/blob/master/cmsml/scripts/check_aot_compatibility.py#L16C5-L16C28
https://github.com/cms-ml/cmsml/blob/master/cmsml/scripts/compile_tf_graph.py#L102C5-L102C16
https://gist.github.com/riga/f9a18023d9f7fb647d74daa9744bb978#file-test_model-cc-L15-L34
https://gist.github.com/riga/4ddd098204cd6168acb4fd962a8d2475#file-aottestplugin-cc-L151-L167


Marcel Rieger, Peter Schleper, Bogdan Wiederspan

"Ahead-of-time" compilation of Tensorflow models

+

Email: bogdan.wiederspan@uni-hamburg.de

Thank you for your attention!

mailto:bogdan.wiederspan@uni-hamburg.de


15 FAQ: in descending frequency

● Can you use this on PyTorch models?


■ No. You need to rebuild your model in TensorFlow


■ Well actually, there is an experimental PyTorch AOT (here)


● You said "no predictable shapes" are a problem, can you convert LSTM, RNNs etc.?


■ No, but padded time-series-networks (fixed shape) should work in theory (we didn't tested this yet)


● You only showed that this works for FeedForward Model what about other model architectures?


■ Testing all models is impossible, currently FeedForward and DeepTau V1 were converted successfully 


■ Harsh truth: Welcome on Board Beta-Tester!


● What about support for different CPU Architectures?


■ can be extended if LLVM supported is there, (see here), x64, ARM is tested by google


▻ given by target-triple string: "ARCHITECTURE-VENDOR-OPERATING_SYSTEM"


▻ e.g. (x86_64_pc_linux)

https://pytorch.org/docs/stable/export.html
https://www.tensorflow.org/xla/developing_new_backend


BackUp FPS 2022



17 CPU performance

1. Runtimes


• bigger batch sizes can be vectorised (decrease 
of time per event, till reaching saturation)


• Equal performance between TF and AOT


■ compare same color lines  
dotted (TF) vs solid (AOT)


• batch size 1 AOT is always better than TF  


2. Multi-threading


• Performance test restricted to 1 thread 


• CMS production models run in single thread



18 Memory comparison AOT vs TF

total memory consumption 

AOT (batch size 1) vs. TF (loading 1 model)

N layers
AOT model *.o
+ Wrapper  [kB]

TF Session + Graph 
[kB]

12 751 8599

25 1583 13688

memory comparison

TF graph vs AOT model

N layers
TF graph 

 [kB]
AOT model 
*.o  [kB]

trainable 
weights       

[kB]

12 1997 749 768

25 3539 1581 1619

●  TF graph more than 2 times bigger than AOT 
 TF graphs contain many meta information


● AOT model consist of (pruned) trainable weights

● AOT by factor 10 smaller than TF


● AOT wrapper = buffer for input, output and 
intermediate layer (scales with batch size)


● wrapper size = total - model size  small (2kB)


● TF I/O tensors are not included in the measurement


● AOT fully independent of libTensorflow.so  
at runtime, saves ∼300 MBs on top



19 How TensorFlow in graph mode operates

● TF generates a data flow graph representing the ML model


● Graphs consist out of kernel and edges


■ Kernel represent operations (Add, MatMul, Conv2D, …)


▻ TF runtime, called session, executes graph kernel


▻ Operation kernels are written in C++ for CPU or CUDA for GPU


■ Edges represent data flowing (Tensors, control dependencies, resource handles, …)


 
 
 

● We are going: beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT

Example of a 1-layer network


matmul

softmax

examples

weights

labels

biases ReLuadd
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23 Bigger picture: The "usual" workflow

● Workflow:


■ Train your model in python  environment of your choice


■ Run the trained model (e.g. for your analysis) in the same environment 



24 This talk: Inference in CMSSW 

● CMS runs your model in CMSSW (through an inference engine) 


● Why we should care: limited memory resources per core (≈2GB)


● Many models already implemented


■ DeepJet tagging


■ DeepFlavor


■ DeepMET


■ ....


→ and even more in the pipeline!


● Naive solutions 


■ buy more hardware


■ deploy only "important" models


■ be more efficient



25

AOT

CPU CPU GPUGPU

currently

done

in progress

seems possible but

not documented

shown today

Bigger picture: Tensorflow in CMSSW 

This talk focuses on: being more efficient with Tensorflow models using XLA and AOT on CPU (left/green path) 



26 How TensorFlow operates

● TF generates a data flow graph representing the ML algorithm (model)


● Graphs consist out of nodes/kernel and edges


■ Nodes represent operations (Add, MatMul, Conv2D, …)


▻ TF runtime execute graph nodes


▻ Operation kernels are written in C++ for CPU or GPU (e.g. with Cuda)


▻ Execution runtime depends on the number of calls and complexity of the kernel


■ Edges represent data flowing (Tensors, control dependencies, resource handles, …)


● This how tensorflow currently operates! The new part is: optimizations (XLA) and independence (AOT)

Example of a 1-layer network

Nodes are math operations and placeholder variables,


connecting lines are edges




27 XLA and AOT

● Compiler framework for linear algebra


● Enables several types of graph optimizations:


■ Hardware-dependent:


▻ TPU, GPU or CPU


■ Hardware-independent: 


▻ Operation/kernel fusion


▻ Common subexpression elimination


▻ Buffer analysis for allocating runtime memory


▻ Pruning of unused nodes 

● Converts graph into self-contained library


■ Graph becomes a series of standalone  
compute kernels


■ No dependence on main libtensorflow.so


● Pros (more on next slides):


1. Reduced memory footprint


2. Trivial multi-threading behavior


3. Runtime potentially faster        depends on degree 
of enabled XLA optimizations and model


● Cons:


■ No dynamic batching, but can be conveniently 
emulated (stitching)


■ models with unpredictable shape at compile time 
are not AOT compatible


－ DeepTau (combined) already AOT compiled!


XLA AOT

my_graph
(TF saved model)

my_graph.h

my_graph.o
+ AOT



28 Study outline

● Software stack


■ slc7_amd64_gcc10 with CMSSW_12_4_0


■ Using custom CMSDIST stack with TF XLA enabled and patched "eigen" library


● Network and payload


■ Created several feed-forward toy models


▻ Up to 25 layers with 256 units, SELU activation


■ CPU runtime tests performed on login-node:


▻ Compared forward pass runtime of TF and AOT in CMSSW


▻ Averaged runtimes over 500 calls, after ∼100 "warm up" calls (measured with plain std::chrono)


▻ Tested event forward time for different batch sizes from 20 to 210 (saturation) 


▻ No XLA optimizations applied so far 


■ Memory tests using IgProf:


▻ Measure memory consumption for setup phase in multithreading scenario 


▻ Compare TF multiple sessions vs. multiple AOT models

...
...

...
...



29 CPU performance

1. Runtimes


■ Equal performance! 
(comparison same color plots)


■ AOT without XLA optimizations


▻ see bare minimum 


2. Multi-threading


■ CMSSW restrict program to 1 thread


■ Weights and series of compute kernels exist 

once in memory (extern "C")


■ accessible by TF through lightweight 
wrapper


▻ can be loaded into multiple threads 


▻ negligible multi-threading overhead  

(see next slides)



● Talk: Focus on setup phase, since we can not measure event phase yet.


● global allocate memory once, per thread for each thread 


● Comparison: TF multiple sessions vs. loading multiple AOT models

30 Understanding of memory for different phases

A
llo

ca
te

d 
m

em
or

y 
[a

.u
.]

threads 1, 2

teardown phase

program runtime [a.u.]

event phasesetup phase

global per thread

Phase Description Action in TF Action in AOT

global setup Before threads (stream modules) are launched tf::loadGraph();
(load model and weights into memory)

loading compiled model     
(external c-function in *.o file)

setup per 
thread

Footprint per thread,  
but before events are analyzed

tf::loadSession();
(device placement & caching per thread)

CppWrapper w;
(access to c-function & reserve buffers for 

input, output)

event phase Resource consumption during event processing tf::run(session, ...);
(book inputs/outputs & evaluate model)

w.run();
(evaluate model)



● Launch multiple sessions with same frozen graph


■ Load graph once (global)


■ Copy graph into session (per-thread)


● Does not include creation of tensors yet!

31 TensorFlow setup phase

code to load graph and sessions

N layers
loadGraph()  

[kB]
trainable weights       

[kB]

12 1997 768

25 3539 1619

Memory allocation of loadSessions()

linear scaling with

sessions as expected

loaded graph

Graph contains plenty of meta data
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● Load multiple AOT models of same batch size


■ Cpp wrapper created to call c-function (per thread) 


▻ Reserves buffers for inputs, outputs per model

▻ off-set = model depending (slope)


■ Reserves buffer for intermediate layers once (*.o)

● Important: each Cpp wrapper handles only one batch size


■ c-function with model weights might be shared between  
different batch sizes (check ongoing, important for stitching)


■ cpp wrapper is neglectable small compared to layers

32 AOT setup phase

N layers
AOT model *.o  

[kB]
trainable weights       

[kB]

12 749 768

25 1581 1619

c-function consists mainly of model weights

difference is result of pruning (bias and batch norm)

Memory allocation of Cpp wrapper

add model size

as offset

total Memory allocation

slope 

barely seeable



33 Comparison

● tf::Graph larger than model weights


■ About twice as large in shown tests


● tf::Session always larger than tf::Graph

■ Model weights copied into each session


● Absolute size per session quite large

● Footprint of compiled c-function solely driven by size 
of model weights


● Cpp wrappers reserve buffers for input, output and all 
intermediate layers, overhead negligible

■ One wrapper needed per expected batch size

■ c-function (weights) might be sharable


● Absolute sizes small compared to TF objects


● independent of TF (save ∼ several hundred MB RAM)


TF AOT

(Session + Graph) vs. (Buffer + *.o)



34

What was done:


■ First steps with a new compiler method for Tensorflow graphs were made


■ CPU runtime and RAM usage of conventional method was compared


▻ CPU runtime is equally good


▻ RAM usage is promising


The future of AOT in CMSSW: Roadmap


● Short term


■ Understand memory measurements in event processing phase


■ Repeat CPU, RAM measurements with production model


▻ DeepTau (combined) already AOT compiled


■ Enable AOT in central CMSDIST stack (bring patch live)


● Medium Term


■ Automate model compilation within scram


■ Provide tools for working with compiled model  
(input / output access + dynamic batching)



Thank you for your attention!

in+ CMSSW

Ahead-of-time (AOT) compilation of Tensorflow models



Buffer



37 Allocated Buffers

● First 2 bits are used to define "kind", else is value 


● kind = 0  layers, 1  temp (output),  
2  entrypoint (input), 3  stackbuffer (intern)


● sum of 0 = *.o file (loaded once) 

Buffer value  Buffer size (B)  Buffer size (kB)  kind
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
131072 32768 32.0 0
32768 8192 8.0 0
20480 5120 5.0 0
514 128 0.125
 2
161 40 0.0390625 1
33 8 0.0078125 1
16 4 0.00390625 0
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3

4097 1024 1.0 1



Input Layer Hidden Layer

Input Layer Hidden Layer Output Layer

Output Layer

● Formula to calculate number of parameters:


● 25 Hidden Layer network:


● 32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 24*( 1282 + 128 * 3 ) + 128 * 10 + 10 = 414538 --> 1658152 Bytes 
 
 
12 Hidden Layer network:


● 32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 11*( 1282 + 128 * 3 ) + 128 * 10 + 10 = 196554 --> 786216 Bytes 
 
 

38 Layer weights



IgProf



40 Overview: Memory measurement with IgProf & Test Setup

● Use “Ignominious profiler” (IgProf, talk) in memory-profile mode


● Encapsulate the code to be measured in a function


－ Trackable by name


－ Easy readout with with SQLite and Python (sqlite3)  


－ Separation of functions into (e.g.) graph loading, session loading, inference calls


● Workflow:

IgProf cmsRun

encapsulated function mem-profile

Igprof-analyse

converts profile


to readable report

Sqlite3-reports

in different


modes

MEM_LIVE
MEM_TOTAL
MEM_LIVE_PEAK

{
● IgProf measures malloc(), free() of heap memory


■ Different memory metrics:


▻ MEM_TOTAL: 		 accumulated malloc()


▻ MEM_LIVE: 	 	 	 difference malloc() and free() for given interval


▻ MEM_LIVE_PEAK:	biggest single malloc()

https://igprof.org/index.html
https://archive.fosdem.org/2015/schedule/event/igprof_the_ignominous_profiler/attachments/slides/625/export/events/attachments/igprof_the_ignominous_profiler/slides/625/fosdem_2015_igprof.pdf


● IgProf measures malloc(), free() of heap memory


■ Different memory metrics:


▻ MEM_TOTAL: 		 accumulated malloc()


▻ MEM_LIVE: 	 	 	 difference malloc() free() for given interval


▻ MEM_LIVE_PEAK:	biggest single malloc()


● Typical IgProf Report:





41 Available metrics

Allocated memory in bytes

Number of allocations Function call history

Encapsulated function to measure



42 How does profiling (IgProf) works?

● Profiling divided into 3 steps:


● 1: Link Profiler with your program


■ IgProf set hooks before every function call


▻ No change to application/build process necessary


● 2: Produce profile reports by execute the program 


■ IgProf can run in 3 modes: 


▻ CPU-runtime (-pp)                        statistical sampling based performance profiles


▻ memory (-mp)                              total dynamic memory allocations    


▻ Instrumentation ()                         time spent in given function (±ns)


■ Store information of the parent and child stack frame


● 3: Analyse your profile


■ IgProf-analyse creates human-readable profile reports 

Program  
to profile

Arguments of  
the program

Destination of Profile Redirect stdout/-err to logfileLinking Mode



43 General information about “profiler”

● Typical program problems: too slow, consumes too much memory, its doing both! 


● Computer programs can be large and complex with multiple subprocess being invoked


■ Making it hard to identify inefficient parts of the program or bugs


● Profiling gives quantified answer about: 
“How much does each function in this program consume resource X?”


● Profiler collecting data mid execution of the program


■ If certain feature is not used, it will not show up in the profile


● CMS own profiler “Ignominious profiler” (IgProf) the (https://igprof.org/index.html)



44 Analyse the profile

● Process profile statistics using the “IgProf-Analyser” tool


■ Possible report output: ASCII-text and sqlite3-database 


■ Preferred way: sqlite3 (need command line sqlite3 app) 
 
 

▻ Enables post-processing and plotting (pythons sqlite3)


▻ Enables web-navigation using “IgProf-Navigator”, need CGI-open area


● Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding



45 Visualization of metrics
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46 Inspect logs with the browser: 127.0.0.1:PORT

Create 1 or more Session

Load 1 or more Graphs



47 Measurement of the setup phase
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● For the setup phase, we are only interested                  
in MEM_LIVE, i.e., amount of physical 
memory blocked by setup functions


● We know exactly which function / interval 
to measure (e.g. tf::loadGraph())


● Applies to global & per-thread measurement

Measured interval

→ malloc() - free()


→ Σ malloc()


→ max single malloc()



48 Measurement of the event phase

● For inference calls in event loop (analyze()), need to know maximum memory             
allocation   within the evaluation call (e.g. tf::run(session, ...))


● Open question: which metric to use?

■ LIVE:	 	 difference between "after" - "before", should be 0 in absence of leaks

■ LIVE_PEAK: 	only measures largest, single allocation

■ MAX: 	 	 "records the largest single allocation by any function" (link)


	 	 	 	 	 	 	 → Not sure yet which one to use
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https://igprof.org/analysis.html


49 *.o file offset

● Pruning removed nodes that does not change the values:


▻ Bias tensors removed (default value = 0)


▻ Batch norm Gamma and Beta removed (default = 1, 0)


● (3 * 64 + 3 * 12 * 128 + 10)*4/1024 = 18.7890625


■ 64, 128 , 10 are shape of network


■ bias, gamma and beta have same shape (thus * 3)


■ 4 since 32 Bit-float weights

N layers
AOT model *.o  

[kB]
trainable weights       

[kB]

12 749 768

25 1581 1619

c-function consists mainly of model weights

difference is result of pruning (bias and batchnorm)



50 Potential advantages in CMSSW

● Current TF workflow


■ Training in python, then export to frozen graph


■ Load graph in C++ (once per process)


■ Mount graph onto session (once per stream module instance)


■ Use TF C++ API to feed, run and read


▻ No simple handles for optimization


● Potential AOT benefits


■ Easy to use graph and compiler optimizations


■ Potentially faster (?), might depend on model


■ Reduced memory footprint


▻ No need to load the full libtensorflow.so


▻ Model weights only once in memory


▻ Virtually no memory overhead over multiple threads



51 Requirements / implications

● For TF installation in CMSDIST


■ Needs to be installed with XLA support, not done yet but mostly (but described e.g. here)


▻ One incompatibility "eigen" in CMSDIST, but resolvable


● For models


■ Graph to be in "saved model" format (standard), exported with target signature(s), i.e., input shapes


■ Custom operations need to be compositions of TF ops; currently not supported:


▻ Some ops of standalone keras (use of tf.keras is anyway encouraged)


▻ Some TF ops with unpredictable shape (e.g. tf.where)


● For inference code in CMSSW


■ For now: created *.o files must be linked manually in BuildFiles


▻ Vision: add hooks to BuildFiles and implement them to work with scram, e.g.


<aot_compile model="/data/my_model" class="MyModel" batch_sizes="1 2 4 
8"/>


■ No more access to tensorflow::Tensor, input / output manipulation done on bare pointers


▻ Simple set of tools could provide convenience

https://gist.github.com/riga/f9a18023d9f7fb647d74daa9744bb978
https://www.tensorflow.org/guide/saved_model


52 XLA

● Graphs can be pre-compiled with the saved_model_cli tool


● Based on domain-specific XLA (Accelerated Linear Algebra) compiler


● Pros:


■ Generated files self-contained and, in particular, do not require the TensorFlow runtime


■ Provide a simple function that can be simply called with network inputs


■ Can greatly improve performance


● Cons:


■ Compilation process challenging to automate in production


■ Batch sizes are fixed and need to be known a priori, or either padded or stitched

my_graph
(TF saved model)

my_graph.h

my_graph.o

https://www.tensorflow.org/xla


53 Potential advantages in CMSSW

● Current TF workflow


■ Training in python, then export to frozen graph


■ Load graph in C++ (once per process)


■ Mount graph onto session (once per stream module instance)


■ Use TF C++ API to feed, run and read


▻ No simple handles for optimization


● Potential AOT benefits


■ Easy to use graph and compiler optimizations


■ Potentially faster (?), might depend on model


■ Reduced memory footprint


▻ No need to load the full libtensorflow.so


▻ Model weights only once in memory


▻ Virtually no memory overhead over multiple threads
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TF 1.6, single thread
TF 1.6, 4 threads
TF 2.1, single thread
TF 2.1, 4 threads
TF 2.1, single thread, AOT
TF 2.1, 4 threads, AOT
ONNX, single thread

Averages over 500 inferences

CMS simulation
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56 Inference of neural network models in CMS

Context of this talk: 


● Service work for "Machine Learning Production Group" for the CMS Experiment


● Talk focuses on improvement of computing performance of neural networks


Inference of neural network models in CMS


● Inference engine of CMS called CMSSW 


● models run single threaded in CMSSW


● Why we in CMS care: limited memory resources per core (≈2GB)


● Many production models already implemented


■ DeepJet tagging, DeepFlavor, DeepMET (50-100 MB each)  and even more in the pipeline!


● most models run in CPU only mode


● Naive solutions 


■ buy more hardware


■ deploy only "important" models


■ be more efficient



57 Overview: Different ways to run Tensorflow (TF) models

Focus of this talk: 


being more efficient with TF models using XLA and AOT on CPU (left/green path) 

AOT

CPU CPU, GPU

shown today

JS

CPU, GPU

normal TF

 usage

activated using

XLA Flags

XLA ="Accelerated Linear Algebra"

AOT = "Ahead of time", 

compile code at build time into 
system dependent binary



58 How TensorFlow in graph mode operates

● TF generates a data flow graph representing the ML model


● Graphs consist out of kernel and edges


■ Kernel represent operations (Add, MatMul, Conv2D, …)


▻ TF runtime, called session, executes graph kernel


▻ Operation kernels are written in C++ for CPU or CUDA for GPU


■ Edges represent data flowing (Tensors, control dependencies, resource handles, …)


 
 
 

● Beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT)

Example of a 1-layer network


matmul

softmax

examples

weights

labels

biases ReLuadd



59 What does XLA and AOT do?

Enables several types of graph optimizations


● On graph level:


■ kernel fusion


■ Buffer analysis for allocating runtime memory 
(eliminates intermediate caches)


■ Common subexpression elimination


■ Pruning of unused kernel 


● On hardware level:


■ TPU, GPU or CPU (different backends)

● Converts graphs into self-contained library


■ Graph becomes a series of compute kernels 
in C++


■ No dependence on main 

libtensorflow.so


● Pros:


1. Reduced memory footprint (shown later)


2. Trivial multi-threading behavior 


3. Runtime potentially faster (shown later)


● Cons:


1. No dynamic batching (fixed memory layout)


2. Graph needs to be XLA compatible  
(shown later)

AOT

my_graph
(TF saved model,
default in TF2)

my_graph.h

my_graph.o
+ AOT

Input (Python) Output (C++)



60 AOT Compilation workflow summary

Step 2: Tensorflow Optimization Step 3: XLA Optimization

save model with fixed batch size

(static memory layout)

MetaOptimizer

Step 1: Prepare graph

Step 4: AOT compiled using TF "saved_model_cli" tool

XLA_optizmized  
static my_graph

my_graph.h

my_graph.o
AOT

Final OutputInput

optimization level 

configurable

matmul

softmax

examples

weights

labels

biases ReLuadd

optimization level 

configurable
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Performance Study



62 Performance study outline

Network and payload


● Created several feed-forward toy model


■ 12/25 layers, 128/256 units, batch-norm and SELU activation


● CPU runtime tests performed on login-node with CMSSW:


■ Compared forward pass runtime of TF C++ vs. AOT


■ inputs of the network are random values 


■ Averaged runtimes over 500 calls, after 100 "warm up" calls


■ Tested event forward time for different batch sizes from 20 to 210


■ No XLA optimizations applied


● Memory tests using MemoryProfiler:


■ Measure memory consumption for setup phase

...
...

...
...



63

CPU runtime Study



64 CPU performance

1. Runtimes


• bigger batch sizes can be vectorised (decrease 
of time per event, till reaching saturation)


• Equal performance between TF and AOT


■ compare same color lines  
dotted (TF) vs solid (AOT)


• batch size 1 AOT is always better than TF  


2. Multi-threading


• Performance test restricted to 1 thread 


• CMS production models run in single thread



65

Memory Study



66 Memory comparison AOT vs TF

total memory consumption 

AOT (batch size 1) vs. TF (loading 1 model)

N layers
AOT model *.o
+ Wrapper  [kB]

TF Session + Graph 
[kB]

12 751 8599

25 1583 13688

memory comparison

TF graph vs AOT model

N layers
TF graph 

 [kB]
AOT model 
*.o  [kB]

trainable 
weights       

[kB]

12 1997 749 768

25 3539 1581 1619

● TF graph more than 2x bigger than AOT 
 TF graphs contain many meta information


● AOT model consist of (pruned) trainable weights

● AOT by factor 10 smaller than TF


● AOT wrapper = buffer for input, output and 
intermediate layer (scales with batch size)


● wrapper size = total - model size  small (2kB)


● TF I/O tensors are not included in the measurement


● AOT fully independent of libTensorflow.so  
at runtime, saves several hundred MBs on top



67

Limits of AOT compilation



68 When does AOT compilation fail?

example: check AOT compatibility of 

feed-forward network with batch-norm 


for TF v. 1.4

network is not 
AOT compatible

Possible reasons to fail AOT compilation:


1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)


2. No existing TF XLA implementation of the kernel 


‣ more XLA kernels added with each TF update

How to check if an XLA implementation exist for a given model:


1. Create XLA operation table during TF compilation


2. Get all used nodes within graph


3. Find match between table and graph



69 Summary and Outlook:

● Summary:


■ a new method to run TF Graphs on CPU, called AOT, was presented


■ first runtimes showed that AOT is on average comparable fast as TF C++ models


‣ batch size 1 in AOT is always faster than TF C++


‣ AOT open gates to more optimization with different XLA level


■ AOT memory footprint is about factor 10 smaller than TF 


■ presented limits of AOT compilation in the context of model building and constraints on ops 
 

● CMS Outlook:


■ switch to AOT models would give room for more models in current hardware stack (save money)


■ slight increase in performance expected, since production models run on single batch mode


● General Outlook:


■ documentation of compiling workflow will be written


■ tools for model preparation are in development
 you don't start from 0



Marcel Rieger, Peter Schleper, Bogdan Wiederspan

"Ahead-of-time" compilation of Tensorflow models

+

Email: bogdan.wiederspan@uni-hamburg.de

Thank you for your attention!

mailto:bogdan.wiederspan@uni-hamburg.de
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73 Requirements / implications

● For TF installation in CMSDIST


■ Needs to be installed with XLA support, not done yet but mostly (but described e.g. here)


▻ One incompatibility "eigen" in CMSDIST, but resolvable


● For models


■ Graph to be in "saved model" format (standard), exported with target signature(s), i.e., input shapes


■ Custom operations need to be compositions of TF ops; currently not supported:


▻ Some ops of standalone keras (use of tf.keras is anyway encouraged)


▻ Some TF ops with unpredictable shape (e.g. tf.where)


● For inference code in CMSSW


■ For now: created *.o files must be linked manually in BuildFiles


▻ Vision: add hooks to BuildFiles and implement them to work with scram, e.g.


<aot_compile model="/data/my_model" class="MyModel" batch_sizes="1 2 4 
8"/>


■ No more access to tensorflow::Tensor, input / output manipulation done on bare pointers


▻ Simple set of tools could provide convenience

https://gist.github.com/riga/f9a18023d9f7fb647d74daa9744bb978
https://www.tensorflow.org/guide/saved_model


74 Advantages of using Graphs

● Parallelism:
■ identify operations that can be executed in parallel

● Computation optimization: 
■ graphs are well-known data structure
■ optimisation possible. 
▻ e.g: prune unused nodes (size optimisation)
▻ detect redundant operations or sub-optimal graphs and replace them with the best 

alternatives (speed optimisation)
● Portability: 
■ graphs are language- and platform-neutral

● Distributed execution: 
■ Every graph’s node can be placed on an independent device and on a different machine.



● Talk: Focus on setup phase, since we can not measure event phase yet.


● global allocate memory once, per thread for each thread 


● Comparison: TF multiple sessions vs. loading multiple AOT models

75 Understanding of memory for different phases
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threads 1, 2

teardown phase

program runtime [a.u.]

event phasesetup phase

global per thread

Phase Description Action in TF Action in AOT

global setup Before threads (stream modules) are launched tf::loadGraph();
(load model and weights into memory)

loading compiled model     
(external c-function in *.o file)

setup per 
thread

Footprint per thread,  
but before events are analyzed

tf::loadSession();
(device placement & caching per thread)

CppWrapper w;
(access to c-function & reserve buffers for 

input, output)

event phase Resource consumption during event processing tf::run(session, ...);
(book inputs/outputs & evaluate model)

w.run();
(evaluate model)



● Launch multiple sessions with same frozen graph


■ Load graph once (global)


■ Copy graph into session (per-thread)


● Does not include creation of tensors yet!

76 TensorFlow setup phase

code to load graph and sessions

N layers
loadGraph()  

[kB]
trainable weights       

[kB]

12 1997 768

25 3539 1619

Memory allocation of loadSessions()

linear scaling with

sessions as expected

loaded graph

Graph contains plenty of meta data
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● Load multiple AOT models of same batch size


■ Cpp wrapper created to call c-function (per thread) 


▻ Reserves buffers for inputs, outputs per model

▻ off-set = model depending (slope)


■ Reserves buffer for intermediate layers once (*.o)

● Important: each Cpp wrapper handles only one batch size


■ c-function with model weights might be shared between  
different batch sizes (check ongoing, important for stitching)


■ cpp wrapper is neglectable small compared to layers

77 AOT setup phase

N layers
AOT model *.o  

[kB]
trainable weights       

[kB]

12 749 768

25 1581 1619

c-function consists mainly of model weights

difference is result of pruning (bias and batch norm)

Memory allocation of Cpp wrapper

add model size

as offset

total Memory allocation

slope 

barely seeable



78 XLA

● Graphs can be pre-compiled with the saved_model_cli tool


● Based on domain-specific XLA (Accelerated Linear Algebra) compiler


● Pros:


■ Generated files self-contained and, in particular, do not require the TensorFlow runtime


■ Provide a simple function that can be simply called with network inputs


■ Can greatly improve performance


● Cons:


■ Compilation process challenging to automate in production


■ Batch sizes are fixed and need to be known a priori, or either padded or stitched

my_graph
(TF saved model)

my_graph.h

my_graph.o

https://www.tensorflow.org/xla


79 Potential advantages in CMSSW

● Current TF workflow


■ Training in python, then export to frozen graph


■ Load graph in C++ (once per process)


■ Mount graph onto session (once per stream module instance)


■ Use TF C++ API to feed, run and read


▻ No simple handles for optimization


● Potential AOT benefits


■ Easy to use graph and compiler optimizations


■ Potentially faster (?), might depend on model


■ Reduced memory footprint


▻ No need to load the full libtensorflow.so


▻ Model weights only once in memory


▻ Virtually no memory overhead over multiple threads
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TF 1.6, single thread
TF 1.6, 4 threads
TF 2.1, single thread
TF 2.1, 4 threads
TF 2.1, single thread, AOT
TF 2.1, 4 threads, AOT
ONNX, single thread

Averages over 500 inferences

CMS simulation



80 Potential advantages in CMSSW

● Current TF workflow


■ Training in python, then export to frozen graph


■ Load graph in C++ (once per process)


■ Mount graph onto session (once per stream module instance)


■ Use TF C++ API to feed, run and read


▻ No simple handles for optimization


● Potential AOT benefits


■ Easy to use graph and compiler optimizations


■ Potentially faster (?), might depend on model


■ Reduced memory footprint


▻ No need to load the full libtensorflow.so


▻ Model weights only once in memory


▻ Virtually no memory overhead over multiple threads
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TF 1.6, single thread
TF 1.6, 4 threads
TF 2.1, single thread
TF 2.1, 4 threads
TF 2.1, single thread, AOT
TF 2.1, 4 threads, AOT
ONNX, single thread

Averages over 500 inferences

CMS simulation



● Session = environment that allocates resources and execute graph


● Launch multiple sessions with same frozen graph


■ Load graph once (global)


■ Copy graph into session (per-thread)


● Does not include creation of tensors yet!

81 TensorFlow memory allocation in setup phase

Memory allocation of loaded Sessions

linear scaling with

sessions as expected

loaded graph

N layers
loaded Graph  

[kB]
trainable weights       

[kB]

12 1997 768

25 3539 1619

session uses meta data saved in Graph
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● Load multiple AOT models of same batch size


■ Cpp wrapper created to call c-function (per thread) 


▻ Reserves buffers for inputs, outputs per model

■ Reserves buffer for intermediate layers once (*.o)


▻ off-set = model depending (slope)

● Important: each Cpp wrapper handles only one batch size


■ c-function with model weights might be shared between  
different batch sizes (check ongoing)


■ cpp wrapper is neglectable small compared to layers

82 AOT memory allocation in the setup phase

N layers
AOT model *.o  

[kB]
trainable weights       

[kB]

12 749 768

25 1581 1619

c-function consists mainly of model weights

difference is result of pruning (bias and batch norm)

Memory allocation of Cpp wrapper

add model size

as offset

total Memory allocation (weights + wrapper)

slope 

barely seeable



83 Comparison of static memory allocation

1. tf::Graph larger than model weights (1/2 of graph 
are meta information)


2. tf::Session always larger than tf::Graph
■ Model weights are likely copied into each session

3. Absolute size per session quite large

1. Footprint of compiled c-function solely driven            
by size of model weights (small slope)

■ C++ wrappers reserve buffers for input, output 

and all intermediate layers, almost no overhead

2. One wrapper needed per expected batch size


■ Model weights in c-function might be sharable

3. Absolute sizes small compared to bare TF objects


● Also fully independent of libTensorflow.so at 
runtime, saves several hundred MBs on top


Bare TF AOT

Note: only need to look at 1 loaded model

 once cmssw#40161 is merged

https://github.com/cms-sw/cmssw/pull/40161


how buffer are allocated



85 Allocated Buffers

● First 2 bits are used to encode "kind", else is value 


● kind = 0  layers, 1  temp (output),  
2  entrypoint (input), 3  stackbuffer (intern)


● sum of 0 = *.o file (loaded once) 

Buffer value  Buffer size (B)  Buffer size (kB)  kind
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
131072 32768 32.0 0
32768 8192 8.0 0
20480 5120 5.0 0
514 128 0.125
 2
161 40 0.0390625 1
33 8 0.0078125 1
16 4 0.00390625 0
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3

4097 1024 1.0 1

SumBuffer: 750.2 kB, 

ModelTypeBuffer Calculated:  767.8 kB



Input Layer Hidden Layer

Input Layer Hidden Layer Output Layer

Output Layer

● Formula to calculate number of parameters:


● 25 Hidden Layer network:


● 32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 24*( 1282 + 128 * 3 ) + 128 * 10 + 10 = 414538 --> 1658152 Bytes 
 
 
12 Hidden Layer network:


● 32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 11*( 1282 + 128 * 3 ) + 128 * 10 + 10 = 196554 --> 786216 Bytes 
 
 

86 Layer weights



87 *.o file offset

● Pruning removed nodes that does not change the values:


▻ Bias tensors removed (default value = 0)


▻ Batch norm Gamma and Beta removed (default = 1, 0)


● (3 * 64 + 3 * 12 * 128 + 10)*4/1024 = 18.7890625


■ 64, 128 , 10 are shape of network


■ bias, gamma and beta have same shape (thus * 3)


■ 4 since 32 Bit-float weights

N layers
AOT model *.o  

[kB]
trainable weights       

[kB]

12 749 768

25 1581 1619

c-function consists mainly of model weights

difference is result of pruning (bias and batchnorm)



IgProf memory profiler



89 Overview: Memory measurement with IgProf & Test Setup

● Use “Ignominious profiler” (IgProf, talk) in memory-profile mode


● Encapsulate the code to be measured in a function


－ Trackable by name


－ Easy readout with with SQLite and Python (sqlite3)  


－ Separation of functions into (e.g.) graph loading, session loading, inference calls


● Workflow:

IgProf cmsRun

encapsulated function mem-profile

Igprof-analyse

converts profile


to readable report

Sqlite3-reports

in different


modes

MEM_LIVE
MEM_TOTAL
MEM_LIVE_PEAK

{
● IgProf measures malloc(), free() of heap memory


■ Different memory metrics:


▻ MEM_TOTAL: 		 accumulated malloc()


▻ MEM_LIVE: 	 	 	 difference malloc() and free() for given interval


▻ MEM_LIVE_PEAK:	biggest single malloc()

https://igprof.org/index.html
https://archive.fosdem.org/2015/schedule/event/igprof_the_ignominous_profiler/attachments/slides/625/export/events/attachments/igprof_the_ignominous_profiler/slides/625/fosdem_2015_igprof.pdf


● IgProf measures malloc(), free() of heap memory


■ Different memory metrics:


▻ MEM_TOTAL: 		 accumulated malloc()


▻ MEM_LIVE: 	 	 	 difference malloc() free() for given interval


▻ MEM_LIVE_PEAK:	biggest single malloc()


● Typical IgProf Report:





90 Available metrics

Allocated memory in bytes

Number of allocations Function call history

Encapsulated function to measure



91 How does profiling (IgProf) works?

● Profiling divided into 3 steps:


● 1: Link Profiler with your program


■ IgProf set hooks before every function call


▻ No change to application/build process necessary


● 2: Produce profile reports by execute the program 


■ IgProf can run in 3 modes: 


▻ CPU-runtime (-pp)                        statistical sampling based performance profiles


▻ memory (-mp)                              total dynamic memory allocations    


▻ Instrumentation ()                         time spent in given function (±ns)


■ Store information of the parent and child stack frame


● 3: Analyse your profile


■ IgProf-analyse creates human-readable profile reports 

Program  
to profile

Arguments of  
the program

Destination of Profile Redirect stdout/-err to logfileLinking Mode



92 General information about “profiler”

● Typical program problems: too slow, consumes too much memory, its doing both! 


● Computer programs can be large and complex with multiple subprocess being invoked


■ Making it hard to identify inefficient parts of the program or bugs


● Profiling gives quantified answer about: 
“How much does each function in this program consume resource X?”


● Profiler collecting data mid execution of the program


■ If certain feature is not used, it will not show up in the profile


● CMS own profiler “Ignominious profiler” (IgProf) the (https://igprof.org/index.html)



93 Analyse the profile

● Process profile statistics using the “IgProf-Analyser” tool


■ Possible report output: ASCII-text and sqlite3-database 


■ Preferred way: sqlite3 (need command line sqlite3 app) 
 
 

▻ Enables post-processing and plotting (pythons sqlite3)


▻ Enables web-navigation using “IgProf-Navigator”, need CGI-open area


● Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding



94 Visualization of metrics
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95 Inspect logs with the browser: 127.0.0.1:PORT

Create 1 or more Session

Load 1 or more Graphs



96 Measurement of the setup phase
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● For the setup phase, we are only interested                  
in MEM_LIVE, i.e., amount of physical 
memory blocked by setup functions


● We know exactly which function / interval 
to measure (e.g. tf::loadGraph())


● Applies to global & per-thread measurement

Measured interval

→ malloc() - free()


→ Σ malloc()


→ max single malloc()



97 Measurement of the event phase

● For inference calls in event loop (analyze()), need to know maximum memory             
allocation   within the evaluation call (e.g. tf::run(session, ...))


● Open question: which metric to use?

■ LIVE:	 	 difference between "after" - "before", should be 0 in absence of leaks

■ LIVE_PEAK: 	only measures largest, single allocation

■ MAX: 	 	 "records the largest single allocation by any function" (link)


	 	 	 	 	 	 	 → Not sure yet which one to use
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https://igprof.org/analysis.html


98 Potential advantages in CMSSW

● Current TF workflow


■ Training in python, then export to frozen graph


■ Load graph in C++ (once per process)


■ Mount graph onto session (once per stream module instance)


■ Use TF C++ API to feed, run and read


▻ No simple handles for optimization


● Potential AOT benefits


■ Easy to use graph and compiler optimizations


■ Potentially faster (?), might depend on model


■ Reduced memory footprint


▻ No need to load the full libtensorflow.so


▻ Model weights only once in memory


▻ Virtually no memory overhead over multiple threads



ML Production 
Inference Strategies



Title on frontpage

01.01.2022

Updates on TensorFlow AOT and XLA

in CMSSW


Inference and Batching Strategy

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

in+ CMSSW



Summary from previous presentations
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AOT

CPU CPU GPUGPU

currently

done

possible,

default


deactivated

(cmsdist#7648)some gpu flags 


added but still hardly

documented 

shown today

Reminder: TensorFlow in CMSSW 

https://github.com/cms-sw/cmsdist/pull/7648
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/compiler/xla/debug_options_flags.cc


103 Reminder: What does XLA and AOT do?

Enables several types of graph optimizations


● On graph level:


■ kernel fusion


■ Buffer analysis for allocating runtime memory 
(eliminates intermediate caches)


■ Common subexpression elimination


■ Pruning of unused kernel 


● On hardware level:


■ TPU, GPU or CPU (different backends)

● Converts graphs into self-contained library


■ Graph becomes a series of C++ compute kernels 


■ No dependence on main libtensorflow.so


● Pros:


1. Reduced memory footprint


2. Trivial multi-threading behavior 


3. Runtime potentially faster (depends on degree 
of optimization)


● Cons:


1. No dynamic batching (fixed memory layout) 
but can be emulated                                   
(padding/stitching, shown later)


2. Graph needs to be XLA compatible 

AOT

my_graph
(TF saved model,
default in TF2)

my_graph.h

my_graph.o
+ AOT

Input (Python) Output (C++)



104 Results of previous contribution (link ☞) on memory footprint

1. tf::Graph larger than model weights


■ About twice as large in shown tests

2. tf::Session always larger than tf::Graph
■ Model weights likely copied into each session

3. Absolute size per session quite large

1. Footprint of compiled c-function solely driven            
by size of model weights

■ C++ wrappers reserve buffers for input, output 

and all intermediate layers, almost no overhead

2. One wrapper needed per expected batch size


■ Model weights in c-function might be sharable (*)

3. Absolute sizes small compared to bare TF objects


● Also fully independent of libTensorflow.so at 
runtime, saves ∼300 MBs on top


Bare TF AOT

Note: only need to look at 1 loaded model

 once cmssw#40161 is merged

https://indico.cern.ch/event/1180977/#4-updates-of-ahead-of-time-com
https://github.com/cms-sw/cmssw/pull/40161


105 Results of previous contributions (link ☞) on model compatibility

example: check AOT compatibility of 

feed-forward network with batch-norm 


for TF v. 1.4

Possible reasons to fail AOT compilation:


1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)


2. No existing TF XLA implementation of the kernel 


■ more XLA kernel implementation added with each TF update


XLA compatibility check for a given model:


1. requires TF-to-XLA conversion table, created by: 
tf2xla_supported_ops --device="XLA_{CPU,GPU}_JIT"


2. Find match between table and nodes in graph, using cmsml tool: 

network is not 
AOT compatible

https://indico.cern.ch/event/1219738/contributions/5154212/attachments/2555559/4403617/2022-11-28_bogdan_mlprod.pdf


106 Checklist for moving to production

1. Read documentation on how to integrate 
AOT models in CMSSW


2. Train network and store as SavedModel


■ Either Keras model or tf.function

3. Integrate into CMSSW plugin


■ Add configuration to BuildFile.xml, e.g.:

<aot_compile model="/data/my_model" 
class="MyModel" batch_sizes="1 2 4 8"/>


■ Perform inference via tfaot::Inference  
helper class


■ Compile

4. Measure runtimes and memory metrics

Possible application workflow

(for PAGs/POGs/DPGs)

Action items

(for us)

→ Add section to cms-ml.github.io/documentation


→ Provide convenience function to cmsml (90% done)

→ Provide AOT compatibility check to cmsml (90% done)

→ Automate compilation in scram tools


→ Create class wrapping bare objects created by AOT, 
providing easier API, dynamic batching, ...


→ Integrate AOT compilation tools into CMSDIST    
(85% done, need to integrate with general TF update)


→ Integrate with performance measurement tools 
(project by Nathan Prouvost, status shown soon)

https://www.tensorflow.org/guide/saved_model
http://cms-ml.github.io/documentation/inference


107 More granular roadmap

● Setup


 Update performance measurement techniques   (→ created semi-automated tool based on IgProf)


 Move to more stable test machine   (→ moved setup to cmsdev test machine, less volatile)


● Updates to TF installation (high priority)


 Enable AOT in central CMSDIST stack   (→ done by Marcel, see update here)


 Find method to check XLA/AOT compatibility (presented last talk, see here)


 Provide tools for working with compiled model (tensor access + dynamic batching if needed)  

(→ ongoing ⏳)


 Automate model compilation within scram


● Measurements


look into possible batch strategies (→ shown today)


⏳  Use DeepTau as testing model


 AOT compile model


⏳ Adjust inference workflow in CMSSW to use AOT   (→ ongoing ⏳)


 Repeat performance measurements


 Measure memory consumption in events processing phase

https://indico.cern.ch/event/1226617/contributions/5182200/attachments/2569682/4430805/2022-12-19_tf_status_plans.pdf


Inference & batching strategies



109 Static batching and consequences for AOT

● AOT has no support for dynamic batching


■ No interest expressed by Google to add support in the near future 

● Resulting challenges for AOT


■ Note: most applications in CMSSW are single-batch anyway


■ Model inference that uses batching (e.g. per jet / tau / ...) would require                                                
multiple compiled models with different static batch sizes


• Each compiled AOT model consist of one header and one object file (with weights)


• Having multiple models requires loading weights (*.o file) multiple times


→ Not feasible to compile every possible batch size 

● Possible solution


❗ Emulate dynamic batching with different strategies

my_graph
(TF saved model,
default in TF2)

my_graph.h

my_graph.o
+ AOT

Input (Python) Output (C++)



110 Possible AOT inference strategies

● Batching strategies to emulate dynamic batching: normal, stitching, padding


● Example: batch size 3

NB: more events require 


more sophisticated combinations ❗

padding (4 - 1)

model: aot_batch_4.h

input: [e1, e2, e3, 0]

output: slice[f(e1), f(e2), f(e3), f(0)] 

normal 3

model: aot_batch_3.h

input: [e1, e2, e3]

output: [f(e1), f(e2), f(e3)]

stitching 2+1

model: aot_batch_{1,2}.h

input: [e1],[e2, e3]

output: concat([f(e1)], [f(e2), f(e3)])

stitching 1+1+1

model: aot_batch_1.h

input: [e1], [e2], [e3]

output: concat([f(e1)], [f(e2)], [f(e3)])

Normal

(exact batch size)

Stitching

(pure additive combination)

Padding

(allow marginal zero padding)



111 AOT inference strategies: padding and stitching

runtime for network with 25 layers, 128 nodes
Events Batch strategy Runtime [ms] / batch Mean runtime [ms] Std runtime [ms]

1 1 62.84 62.8 15.8
2 2 101.28 202.6 18.6
4 4 68.67 274.7 22.4
8 8 63.93 511.5 28.2
16 16 63.91 1022.5 50.3
32 32 64.53 2064.9 206.3
64 64 28.4 1817.8 79.0
16 16 * 1 62.84 1005.4 63.2
32 32 * 1 62.84 2010.9 89.4
5 (8 - 3) 64.48 515.9 38.4
6 (8 - 2)


)

64.46 515.6 38.5

7 (8 - 1) 64.17 513.4 33.9
5 4 + 1 131.51 337.52 27.4
6 4 + 2 169.95 477.2 29.1
7 4 + 2 + 1 232.79 540.08 33.1

● batch strategy: padding


■ runtime / batch always equals the unpadded 
model eq: (8 - {1,2,3}) ≈ 8


→ 0's are still fully evaluated


● batch strategy: stitching


■ runtime / batch always slower than normal


■ exception: single batching → {16,32} * 1


→ stitching batch size 1 is preferred strategy




112 AOT inference strategies: stitching batch size 1 models

• preferred batch strategy is a hyper-
parameter depending on models complexity


■ simple models (128 nodes) runtime  

is dominated by overhead


■ complex models (256 nodes) or large 
batch sizes benefit from vectorisation


● batch size 1 fast for simple models


● threshold of strategy transition depends on  
the complexity of the model


■ vertical line indicates threshold


■ moves towards smaller batch size  
with increasing model complexity 


■ independent of numbers of layers  
(no vectorisation benefit)


● preferred batch strategy:


■ "stitching" left to the threshold


■ "normal" right to the threshold ❗Note: most applications in CMSSW are single-batch



● Gained insights into possible inference & batching strategies for AOT models to emulate dynamic batching


■ runtime most performant for smallest necessary batch size → not feasible to compile every batch size


● presented first measurements of padding and stitching strategy


■ "padding" shows no runtime benefit compared to "normal"


■ "stitching" multiple models of batch size 1 together is most performant for less complex models


■ "normal" batching strategy preferred for complex models


● General: choice of batching strategy depends on models complexity 


■ threshold of strategy transition is a hyperparameter → needs to be measured for each model 
(we discuss about using Nathans automatised "ML Prof" for this) 

● Further investigation necessary: 


■ are models weights (*.o) shareable between model objects?

113 Summary



Backup



Model Building context



116 Today: Challenges during AOT compilation

Question: When does AOT compilation does (not) work?

Compilation workflow

examples

weights

matmul

labels softmax

biases ReLuadd

Step 1: Optimization by 


"Grappler" (MetaOptimizer) 
Step 2: Optimization using XLA

model saved with

 "tf.saved_model.save" 

MetaOptimizer

configuration through


"tf.config.optimizer.
set_experimental_options" 

Step 0: Prepare graph

Add signatures to saved_model

with static shape in "TensorSpec"

(tool is already created)

Flags during compilation 
(AOT_XLA_FLAGS, 
XLA_DEBUG_FLAGS)

(to gain insights to possible constraints for models to be compiled)

https://www.tensorflow.org/api_docs/python/tf/config/optimizer/set_experimental_options
https://www.tensorflow.org/api_docs/python/tf/config/optimizer/set_experimental_options
https://www.tensorflow.org/api_docs/python/tf/config/optimizer/set_experimental_options
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/aot/flags.cc
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/compiler/xla/debug_options_flags.cc


117 Step 1: What does Grappler do in detail

● Get graph for specific signature (e.g. __inference_standard_lstm_17024_....) 


● Optimize graph with TF's MetaOptimizer (more details)


■ Read progress logs as following:  
<Optimizer Method>: Graph size <AFTER> (<DIFFERENCE>), <needed_time>

https://www.tensorflow.org/guide/graph_optimization


118 Step 2: Op compatibility with XLA

● 2 possible reasons why op-kernels might fail to AOT compile


■ Kernel produces no predictable shapes at compile time (e.g tf.where)


■ No existing XLA implementation of the kernel 


• e.g. non-unrolled LSTM might not be AOT compatible (at least not in TF2.6)

→   Node with the name "while/enter/_2" is not XLA_CPU_JIT compatible


→   kernel named "Enter" hat no XLA implementation


● Goal: need a tool that takes any model and


■ checks if a model is AOT / XLA compatible


■ provides feedback in case it isn't (e.g. list incompatible ops and suggest known alternatives)


● Can help already during the model development phase, rather than after the fact during integration!




119 XLA compatibility checks

More sophisticated method


● TF knows which OP is registered by a flag


● TF to XLA kernel implementation is defined in tensorflow/compiler/tf2xla/kernels


● the following function is used to register an Op: 
REGISTER_XLA_OP(NameObject('OperationName').TypeInformation, 'OpNodeName') e.g


  


Two ways to check model compatibility
  Brute force method


• run graph in

■ TF1 by calling "tf.contrib.compiler.xla.compile(your_function)"
■ TF2 by calling "tf.xla.experimental.compile(your_function)"

■ TF2 by using the "tf.function(experimental_compile=True)" decorator

■ AOT compiler 


• write wrapper to catch the first op name that is not compatible

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/tf2xla/kernels


120 Sophisticated method

General idea:

create table of all compatible ops and find matching graph nodes


1. Get the XLA op table


● Arch. dependent, can only be created during  
full TF compilation in CMSDIST: 
"bazel run -c opt -- tensorflow/compiler/
tf2xla:tf2xla_supported_ops  
--device=XLA_(CPU or GPU)_JIT"

● Both for CPU and GPU (example), contains


■ Compatible ops by name (unique)


■ All accepted type variations

2. Check all nodes in a graph


● Input: SavedModel or Graph (*.pb)


● Get used operations from GraphDef


■ "name" node name (arbitrary identifier)


■ "op" used operation name (unique identifier)


■ "attr" attributes (e.g shape, inputs, types) 


→  Build match with table and provide feedback


● Tool already created


● To be integrated to cmsml once table is compiled in CMSDIST TF compilation (Marcel)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/tf2xla/g3doc/cpu_supported_ops.md


121 Example output method

Operations used by a normal feed-forward network with batch-norm

the network should 
not be AOT 
compatible




Working with IgProf



123 Analyse the profile

● Process profile statistics using the “IgProf-Analyser” tool


■ Possible report output: ASCII-text and sqlite3-database 


■ Preferred way: sqlite3 (need command line sqlite3 app) 
 
 

• Enables post-processing and plotting (pythons sqlite3)


• Enables web-navigation using “IgProf-Navigator”, need CGI-open area


● Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding



124 Inspect logs with the browser: 127.0.0.1:PORT

● We inspected memory usage of Tensorflow regarding sessions and graphs

Create 1 or more Session

Load 1 or more Graphs



● Event phase measurement not there yet


● Problem 1: C++ TF interference has 2 ways to handle input and output tensor


1. define input + output tensors in each new analyze call       allocate memory every time in event phase 


2. create instance variables       allocate memory 1x in setup phase


● Problem 2: need proper memory definition to classify event memory (maximum allocation?)


■  depends on the batch size       which batch size to look at?

125 IgProf memory measurement: Tensorflow event phase

maximum 

dynamic allocation
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teardown phase

program runtime [a.u.]

event phasesetup phase

global per thread



● Talk: Focus on setup phase, since we can not measure event phase yet.


● global allocate memory once, per thread for each thread 


● Comparison: TF multiple sessions vs. loading multiple AOT models

126 Understanding of memory for different phases
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threads 1, 2

teardown phase

program runtime [a.u.]

event phasesetup phase

global per thread

Phase Description Action in TF Action in AOT

global setup Before threads (stream modules) are launched tf::loadGraph();
(load model and weights into memory)

loading compiled model     
(external c-function in *.o file)

setup per 
thread

Footprint per thread,  
but before events are analyzed

tf::loadSession();
(device placement & caching per thread)

CppWrapper w;
(access to c-function & reserve buffers for 

input, output)

event phase Resource consumption during event processing tf::run(session, ...);
(book inputs/outputs & evaluate model)

w.run();
(evaluate model)



First performance study



128 Study outline

● Software stack


■ slc7_amd64_gcc10 with CMSSW_12_4_0


■ Using custom CMSDIST stack with TF XLA enabled and patched "eigen" library


● Network and payload


■ Created several feed-forward toy models


▻ Up to 25 layers with 256 units, SELU activation


■ CPU runtime tests performed on login-node:


▻ Compared forward pass runtime of TF and AOT in CMSSW


▻ Averaged runtimes over 500 calls, after ∼100 "warm up" calls (measured with plain std::chrono)


▻ Tested event forward time for different batch sizes from 20 to 210 (saturation) 


▻ No XLA optimizations applied so far 


■ Memory tests using IgProf:


▻ Measure memory consumption for setup phase in multithreading scenario 


▻ Compare TF multiple sessions vs. multiple AOT models

...
...

...
...



129 CPU performance

1. Runtimes


■ Equal performance! 
(comparison same color plots)


■ AOT without XLA optimizations


▻ see bare minimum 


2. Multi-threading


■ CMSSW restrict program to 1 thread


■ Weights and series of compute kernels exist 

once in memory (extern "C")


■ accessible by TF through lightweight 
wrapper


▻ can be loaded into multiple threads 


▻ negligible multi-threading overhead  

(see next slides)



● Launch multiple sessions with same frozen graph


■ Load graph once (global)


■ Copy graph into session (per-thread)


● Does not include creation of tensors yet!

130 TensorFlow setup phase

code to load graph and sessions

N layers
loadGraph()  

[kB]
trainable weights       

[kB]

12 1997 768

25 3539 1619

Memory allocation of loadSessions()

linear scaling with

sessions as expected

loaded graph

Graph contains plenty of meta data
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● Load multiple AOT models of same batch size


■ Cpp wrapper created to call c-function (per thread) 


▻ Reserves buffers for inputs, outputs per model

▻ off-set = model depending (slope)


■ Reserves buffer for intermediate layers once (*.o)

● Important: each Cpp wrapper handles only one batch size


■ c-function with model weights might be shared between  
different batch sizes (check ongoing, important for stitching)


■ cpp wrapper is neglect able small compared to layers

131 AOT setup phase

N layers
AOT model *.o  

[kB]
trainable weights       

[kB]

12 749 768

25 1581 1619

c-function consists mainly of model weights

difference is result of pruning (bias and batch norm)

Memory allocation of Cpp wrapper

add model size

as offset

total Memory allocation

slope 

barely seeable



TF and XLA insights



133 How TensorFlow operates

● TF generates a data flow graph representing the ML algorithm (model)


● Graphs consist out of nodes/kernel and edges


■ Nodes represent operations (Add, MatMul, Conv2D, …)


▻ TF runtime execute graph nodes


▻ Operation kernels are written in C++ for CPU or GPU (e.g. with Cuda)


▻ Execution runtime depends on the number of calls and complexity of the kernel


■ Edges represent data flowing (Tensors, control dependencies, resource handles, …)


● This how tensorflow currently operates! The new part is: optimizations (XLA) and independence (AOT)

Example of a 1-layer network

Nodes are math operations and placeholder variables,


connecting lines are edges




134 Node Fusion example

A

B

C

1 read of input in A

1 write of A to memory

2 reads of output A from memory

A'

A''

2 reads of input to A' and A''


A' = A->B

A'' = A->C

A is cloned and fused with B and C

Input Input

Rules when to fuse:


● no increase in byte transfer


● producer ops is fused with "_all_" consumers


■ if one op is not fuseable, no fusion happens


reduction of Ops overhead from 3 to 2



135 What is a SavedModel?

● SavedModel is the prefered way to save Models in TF2.X


● A SavedModel is a directory containing 


■ trained parameters (weights, and variables


■  The MetaGraphDef container, which contains:


- the GraphDef (*.pb file)  does not require the original model code to run 


‣ low-level definition of the graph (including list of nodes, input and output connections) 


-    the SaverDef  A class to save and restore variables from checkpoints


■ multiple signatures  can contain multiple variants of the model (multiple v1.MetaGraphDefs, 
identified with the --tag_set flag to saved_model_cli).



136 Files used by Grappler

tensorflow/compiler/jit/build_xla_ops_pass.cc
tensorflow/compiler/jit/compilability_check_util.cc
tensorflow/compiler/jit/deadness_analysis.cc
tensorflow/compiler/jit/encapsulate_subgraphs_pass.cc
tensorflow/compiler/jit/encapsulate_xla_computations_pass.cc
tensorflow/compiler/jit/introduce_floating_point_jitter_pass.cc
tensorflow/compiler/jit/mark_for_compilation_pass.cc
tensorflow/compiler/jit/resource_operation_safety_analysis.cc
tensorflow/compiler/jit/xla_activity_logging_listener.cc
tensorflow/compiler/jit/xla_cluster_util.cc
tensorflow/compiler/jit/xla_cpu_device.cc
tensorflow/compiler/jit/xla_gpu_device.cctensorflow/compiler/tf2xla/const_analysis.cc
tensorflow/compiler/tf2xla/xla_op_registry.cctensorflow/compiler/xla/parse_flags_from_env.cctensorflow/
compiler/mlir/mlir_graph_optimization_pass.cc



137 Files used additionally by XLA

xla/service/all_gather_combiner.cc
xla/service/all_reduce_combiner.cc
xla/service/batchnorm_expander.cc
xla/service/bfloat16_normalization.cc
xla/service/buffer_assignment.cc
xla/service/call_graph.cc
xla/service/call_inliner.cc
xla/service/conditional_canonicalizer.cc
xla/service/conditional_simplifier.cc
xla/service/copy_insertion.cc
xla/service/dfs_hlo_visitor.cc
xla/service/dfs_hlo_visitor_with_default.h
xla/service/dot_merger.cc
xla/service/dump.cc
xla/service/dynamic_dimension_inference.cc
xla/service/dynamic_dimension_simplifier.cc
xla/service/dynamic_padder.cc
xla/service/executable.cc
xla/service/flatten_call_graph.cc
xla/service/generic_transfer_manager.cc
xla/service/gpu/buffer_comparator.cc
xla/service/gpu/cudnn_fused_conv_rewriter.cc
xla/service/gpu/fusion_merger.cc
xla/service/gpu/gemm_algorithm_picker.cc
xla/service/gpu/gemm_thunk.cc
xla/service/gpu/gpu_compiler.cc
xla/service/gpu/gpu_conv_algorithm_picker.cc
xla/service/gpu/gpu_conv_rewriter.cc
xla/service/gpu/gpu_conv_runner.cc
xla/service/gpu/gpu_executable.cc
xla/service/gpu/hlo_to_ir_bindings.cc
xla/service/gpu/horizontal_input_fusion.cc
xla/service/gpu/horizontal_loop_fusion.cc
xla/service/gpu/ir_emitter_unnested.cc
xla/service/gpu/kernel_thunk.cc
xla/service/gpu/launch_dimensions.cc
xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc
xla/service/gpu/multi_output_fusion.cc
xla/service/gpu/nvptx_compiler.cc
xla/service/gpu/nvptx_helper.cc
xla/service/gpu/parallel_loop_emitter.cc

xla/service/gpu/
reduction_dimension_grouper.cc
xla/service/gpu/
reduction_layout_normalizer.cc
xla/service/gpu/reduction_splitter.cc
xla/service/gpu/stream_assignment.cc
xla/service/gpu/tree_reduction_rewriter.cc
xla/service/heap_simulator.cc
xla/service/hlo_alias_analysis.cc
xla/service/hlo_computation.cc
xla/service/hlo_computation.h
xla/service/hlo_constant_folding.cc
xla/service/hlo_cse.cc
xla/service/hlo_dataflow_analysis.cc
xla/service/hlo_dce.cc
xla/service/hlo_evaluator.cc
xla/service/hlo_graph_dumper.cc
xla/service/hlo_instruction.cc
xla/service/hlo_instructions.cc
xla/service/hlo_instructions.h
xla/service/hlo_memory_scheduler.cc
xla/service/hlo_module.cc
xla/service/hlo_parser.cc
xla/service/hlo_pass_fix.h
xla/service/hlo_pass_pipeline.cc
xla/service/hlo_phi_graph.cc
xla/service/hlo_proto_util.cc
xla/service/hlo_schedule.cc
xla/service/hlo_verifier.cc
xla/service/instruction_fusion.cc
xla/service/layout_assignment.cc
xla/service/llvm_ir/fused_ir_emitter.cc
xla/service/local_service.cc
xla/service/platform_util.cc
xla/service/reduce_scatter_combiner.cc
xla/service/reshape_mover.cc
xla/service/service.cc
xla/service/shape_inference.cc
xla/service/slow_operation_alarm.cc
xla/service/sort_simplifier.cc
xla/service/stream_pool.cc
xla/service/tuple_points_to_analysis.cc
xla/service/while_loop_constant_sinking.cc
xla/service/while_loop_simplifier.cc
xla/shape.cc
xla/shape_util.cc
xla/util.cc

jit/clone_constants_for_better_clustering.cc

jit/kernels/xla_ops.cc

jit/xla_compilation_cache.cc

jit/xla_launch_util.cctf2xla/graph_compiler.cc

tf2xla/kernels/reduction_ops_common.cc

tf2xla/kernels/reshape_op.cc

tf2xla/xla_compilation_device.cc

tf2xla/xla_compiler.cc

tf2xla/xla_context.ccmlir/mlir_graph_optimization_pass.cc

mlir/tensorflow/translate/import_model.cc

mlir/tensorflow/utils/bridge_logger.cc

mlir/tensorflow/utils/dump_mlir_util.cc

mlir/xla/transforms/xla_legalize_tf.ccxla/literal_comparison.cc

xla/parse_flags_from_env.cc




Input Layer Hidden Layer Output Layer

138 Layer weights

Input Layer Hidden Layer Output Layer

● Formula to calculate number of parameters:


● 25 Hidden Layer network:


● 32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 24*( 1282 + 128 * 3 ) + 128 * 10 + 10 = 414538 --> 1658152 Bytes 
 
 
12 Hidden Layer network:


● 32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 11*( 1282 + 128 * 3 ) + 128 * 10 + 10 = 196554 --> 786216 Bytes 
 
 

● 414538 / 196554 = 2,109



139 Allocated Buffers

● First 2 bits are used to define "kind", else is value 


● kind = 0  layers, 1  temp (output),  
2  entrypoint (input), 3  stackbuffer (intern)


● sum of 0 = *.o file (loaded once) 

Buffer value  Buffer size (B)  Buffer size (kB)  kind
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
262144 65536 64.0 0
131072 32768 32.0 0
32768 8192 8.0 0
20480 5120 5.0 0
514 128 0.125
 2
161 40 0.0390625 1
33 8 0.0078125 1
16 4 0.00390625 0
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3
19 4 0.00390625 3

4097 1024 1.0 1


