```
outputs = [...]
constant_graph = tf.graph_util.convert_variables_
tf.train.write_graph(constant_graph, "/path/to",
 Ahead-of-time (AOT) compilation of Tensorflow models
```

Ahead-of-time (AOT) compilation in CMSSW

Marcel Rieger, Peter Schleper, <u>Bogdan Wiederspan</u>

SPONSORED BY THE

Federal Ministry of Education and Research

FSP CMS Erforschung von Universum und Materie

Introduction to Tensorflow (TF) with Accelerated Linear Algebra (XLA) and

Motivation: Why CMS care about efficiency 2

- CMS workflow
 - strong memory constrained: **≈2GB per cpu core**
- Many production models already implemented
 - e.g. DeepJet, DeepMET, DeepTau (50-100 MB each) and even more in the pipeline!

In Summary: its getting crowded

- Naive solutions
 - buy more hardware
 - deploy only "important" models
 - more efficient deployment of models (Focus of this talk)

Overview: Different ways to run Tensorflow (TF) models 3

Focus of this talk: (left/green path) deploy TF models using XLA and AOT on CPU

AOT = "Ahead of time",compile code at build time into system dependent binary

How TensorFlow operates in graph mode 4

- TF generates a data flow graph representing the ML model
- Graphs consist out of kernel and edges
 - Kernel represent operations (Add, MatMul, Conv2D, ...)
 - ▶ TF runtime, called session, executes graph kernel
 - \triangleright Operation kernels are written in C++ for CPU or CUDA for GPU
 - Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

Beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT)

What does XLA and AOT do? 5

Enables several types of graph optimizations

- On graph level:
 - kernel fusion (main speed benefit)
 - Buffer analysis for allocating runtime memory (eliminates intermediate caches)
 - Common subexpression elimination
 - Pruning of unused kernel
- On hardware level:
 - TPU, GPU or CPU (different backends)
- Universal: JAX, PyTorch and ONNX use XLA

AOT

- Converts graphs into **self-contained library** (header-object-pair)
 - Graph becomes series of compute kernels in C++
 - No need to load TensorFlow

AOT Compilation workflow summary 6

Step 3: XLA Optimization

CPU runtime and Memory Study

Network and payload

- Created several feed-forward toy models
 - 12/25 layers, 128/256 units, batch-norm and SELU activation

1. CPU runtime tests performed on login-node with CMSSW: Compared forward pass runtime of TF C++ vs. AOT in 1 SingleThread scenario

- inputs of the network are random values
- Averaged runtimes over 500 calls, after 100 "warm up" calls (to eliminate caching effects)
- Tested **event forward time** for different batch sizes
- 2. Memory tests using MemoryProfiler (lgProf)
- 3. Development of batching strategies for different scenarios and compare CPU runtime

(not shown (due): study can be found here)

CPU performance 9

- big batch sizes can be vectorised (decrease of time per event, till reaching saturation)
- In vectorised regime: TF slightly better than AOT
- Single batch: AOT is always better than TF
- overall comparable performance between C++ TF and AOT
 - **default XLA** optimizations applied ⇒ bare minimum

L = # LayerN = # Nodes

dotted = TFsolid = AOT

(Link: cpu performance study)

10 Memory reservation comparison

AOT reserve

- only once its models weights (*.o file)
- every time buffer for input, output and **intermediate layer** (scales with batch size)
- TF reserve
- **<u>only once</u>** its graph=(models weights + meta data)
- **<u>every time</u>** its session=(runtime environment)
- **<u>every time</u>** buffer for input and output (not included here)

In comparions:

AOT size by factor 10 smaller than TF

- e.g. DeepTau would be 10 MB instead of 100MB
- AOT scales great with number of loaded models barely seeable slope
- AOT fully independent of TensorFlow at runtime, saves ~300 MBs on top
 - saves also 1 min of loading TF

Memory usage comparison between 12 and 25 layers networks

(Link: memory study)

Limits of AOT compilation

12 When does AOT compilation fail?

Possible reasons to fail AOT compilation:

1. Kernel produce <u>no predictable shapes</u> (=no fix memory layout) at compile time (e.g tf.where)

- ➡ known model affected by this: LSTMs without padding
- 2. No existing TF XLA implementation of the kernel
 - ► frequent checking: more XLA kernels added with each TF update

Created tool to check if models op nodes has XLA implementation example:

AOT compatibility of

feed-forward network for old TF v. 1.4

Operation	lhas XLA	
MatMul	True	
Identity	ITrue	
Sub	lTrue	
BiasAdd	lTrue	
Mul	True	
Softmax	ITrue	
No0p	ITrue	
Rsqrt	ITrue	
Selu	ITrue	network is no
AddV2	False	
ReadVariableOp	ITrue	AOT compatit
Const	ITrue	

(Link: compatiblity study)

What was done:

- shown new compilation and deployment method for Tensorflow graphs
- showed that AOT is on average comparable fast as TF C++ models
 - AOT open gates to more optimization with different XLA level
- AOT memory footprint of models is about factor 10 smaller than TF

Your turn with AOT:

- Dev tool to check model compatibility (here)
- Dev tools for preparation and compilation (here)
- Example for compilation without helper tools and basic use (here)
- Recommended usage: Use an wrapper made by us (here)
 - wrapper takes care of:
 - ▷ dynamic types
 - ▷ emulation of batch sizes
 - ▷ pointer handling

)

Thank you for your attention!

SPONSORED BY THE

Federal Ministry of Education and Research

Marcel Rieger, Peter Schleper, <u>Bogdan Wiederspan</u>

Email: bogdan.wiederspan@uni-hamburg.de

15 FAQ: in descending frequency

• Can you use this on PyTorch models?

- No. You need to rebuild your model in TensorFlow
- Well actually, there is an experimental PyTorch AOT (here)

• You said "no predictable shapes" are a problem, can you convert LSTM, RNNs etc.?

- No, but padded time-series-networks (fixed shape) should work in theory (we didn't tested this yet) You only showed that this works for FeedForward Model what about other model architectures?
 - Testing all models is impossible, currently FeedForward and DeepTau V1 were converted successfully
 - Harsh truth: Welcome on Board Beta-Tester!

What about support for different CPU Architectures?

- can be extended if LLVM supported is there, (see here), x64, ARM is tested by google ▷ given by target-triple string: "ARCHITECTURE-VENDOR-OPERATING SYSTEM"
- - ⊳ e.g. (x86_64_pc_linux)

BackUp FPS 2022

17 CPU performance

1. Runtimes

- bigger batch sizes can be vectorised (decrease of time per event, till reaching saturation)
- Equal performance between TF and AOT
 - compare same color lines dotted (TF) vs solid (AOT)
- batch size 1 AOT is always better than TF

2. Multi-threading

- Performance test restricted to 1 thread
- CMS production models run in single thread

18 Memory comparison AOT vs TF

memory comparison TF graph vs AOT model				
N layers	TF graph [kB]	AOT model *.o [kB]	trainable weights [kB]	
12	1997	749	768	
25	3539	1581	1619	

TF graph more than 2 times bigger than AOT
 TF graphs contain many meta information
 AOT model consist of (pruned) trainable weights

total memory consumption AOT (batch size 1) vs. TF (loading 1 mode			
N layers	AOT model *.o + Wrapper [kB]	TF Session + [kB]	
12	751	8599	
25	1583	13688	

• AOT by factor 10 smaller than TF

- AOT wrapper = buffer for input, output and intermediate layer (scales with batch size)
- wrapper size = total model size \rightarrow small (2kB)
- $\bullet~$ TF I/O tensors are not included in the measurement
- AOT fully independent of libTensorflow.so at runtime, saves ~300 MBs on top

19 How TensorFlow in graph mode operates

- TF generates a data flow graph representing the ML model
- Graphs consist out of kernel and edges
 - Kernel represent operations (Add, MatMul, Conv2D, ...)
 - ▶ TF runtime, called session, executes graph kernel
 - \triangleright Operation kernels are written in C++ for CPU or CUDA for GPU
 - Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

We are going: beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT

Old Presentations

FSP 2022

SPONSORED BY THE

ederal Ministry of Education and Research

CMSSW session as_text=

First steps with Tensorflow (TF) with

- Accelerated Linear Algebra (XLA) and
- Ahead-of-time (AOT) compilation in CMSSW
 - Marcel Rieger, Peter Schleper, Bogdan Wiederspan

23 Bigger picture: The "usual" workflow

- Workflow:
 - Train your model in python environment of your choice
 - Run the trained model (e.g. for your analysis) in the same environment

24 This talk: Inference in CMSSW

- CMS runs your model in CMSSW (through an *inference engine*)
- Why we should care: **limited memory resources per core (≈2GB)**

• Many models already implemented

- DeepJet tagging
- DeepFlavor
- DeepMET
-
- \rightarrow and even more in the pipeline!

• Naive solutions

- buy more hardware
- <u>deploy only "important" models</u>
- be more efficient

Training engine (Python in *your* env.)

gin.

Ð

Inference

(CMSSW

ce engine) <mark>core (≈2GB)</mark>

25 Bigger picture: Tensorflow in CMSSW

This talk focuses on: being more efficient with Tensorflow models using XLA and AOT on CPU (left/green path)

26 How TensorFlow operates

- TF generates a data flow graph representing the ML algorithm (model)
- Graphs consist out of nodes/kernel and edges
 - Nodes represent operations (Add, MatMul, Conv2D, ...)
 - ▶ TF runtime execute graph nodes
 - Operation kernels are written in C++ for CPU or GPU (e.g. with Cuda) \triangleright
 - ▶ Execution runtime depends on the number of calls and complexity of the kernel
 - Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

• This how tensorflow currently operates! The new part is: **optimizations (XLA)** and **independence (AOT)**

Example of a 1-layer network Nodes are math operations and placeholder variables, connecting lines are edges

27 XLA and AOT

XLA

- Compiler framework for linear algebra
- Enables several types of graph optimizations:
 - Hardware-dependent:
 - ► TPU, GPU or CPU
 - Hardware-independent:
 - ▷ Operation/kernel fusion
 - Common subexpression elimination
 - Buffer analysis for allocating runtime memory \triangleright
 - ▷ Pruning of unused nodes

AO I

- Converts graph into **self-contained library**
 - Graph becomes a series of standalone compute kernels
 - No dependence on main libtensorflow.so
- Pros (more on next slides):
 - 1. Reduced memory footprint
 - 2. Trivial multi-threading behavior
- 3. Runtime potentially faster ----- depends on degree of enabled XLA optimizations and model
 - Cons:
 - No dynamic batching, but can be conveniently emulated (stitching)
- models with unpredictable shape at compile time my_graph.h are not AOT compatible
- my_graph.o - DeepTau (combined) already AOT compiled!

28 Study outline

• Software stack

- slc7_amd64_gcc10 with CMSSW_12_4_0
- Using custom CMSDIST stack with TF XLA enabled and patched "eigen" library
- Network and payload
 - Created several feed-forward toy models
 - ▶ Up to 25 layers with 256 units, SELU activation
 - CPU runtime tests performed on login-node:
 - ▷ Compared forward pass runtime of TF and AOT in CMSSW

 - ▶ Tested event forward time for different batch sizes from 2⁰ to 2¹⁰ (saturation)
 - ► No XLA optimizations applied so far
 - Memory tests using IgProf:
 - ▶ Measure memory consumption for setup phase in multithreading scenario
 - ▶ Compare TF multiple sessions vs. multiple AOT models

 \triangleright Averaged runtimes over 500 calls, after ~100 "warm up" calls (measured with plain std::chrono)

29 CPU performance

1. Runtimes

Equal performance!

(comparison same color plots)

AOT without XLA optimizations

⊳ see bare minimum

2. Multi-threading

- CMSSW restrict program to 1 thread
- Weights and series of compute kernels exist **once** in memory (extern "C")
- accessible by TF through lightweight wrapper
 - ▷ can be loaded into multiple threads
 - negligible multi-threading overhead (see next slides)

30 Understanding of memory for different phases

- Talk: Focus on setup phase, since we can not measure event phase yet.
- global allocate memory once, per thread for each thread
- Comparison: **TF multiple sessions vs. loading multiple AOT models**

Phase	Descripti	on	Action in TF	Action in AOT
global setup	Before threads (stream mo	dules) are launched	<pre>tf::loadGraph(); (load model and weights into memory)</pre>	loading compiled model (external c-function in *.o file)
setup per thread	Footprint per but before events a	thread, re analyzed	<pre>tf::loadSession(); (device placement & caching per thread)</pre>	CppWrapper w; (access to c-function & reserve buffers for input, output)
event phase	Resource consumption duri	ng event processing	<pre>tf::run(session,); (book inputs/outputs & evaluate model)</pre>	w.run(); (evaluate model)
Allocated memory [a.u.]	setup phase global per thread	threads 1, 2	event phase	teardown phase

program runtime [a.u.]

31 **TensorFlow** setup phase

- Launch multiple sessions with same frozen graph
 - Load graph once (global)
 - Copy graph into session (per-thread)
- Does not include creation of tensors yet!

Memory allocation of loadSessions()

code to load graph and sessions

linear scaling with sessions as expected

	Graph	contains	plenty	of	meta	data
--	-------	----------	--------	----	------	------

	N layers	loadGraph() [kB]	trainable weight [kB]
	12	1997	768
ded graph	25	3539	1619

32 AOT setup phase

- Load multiple AOT models of same batch size
 - Cpp wrapper created to call c-function (per thread)
 - ▷ Reserves buffers for inputs, outputs per model
 - ▷ off-set = model depending (slope)
 - Reserves buffer for intermediate layers once (*.o)
- Important: each Cpp wrapper handles only one batch siz
 - c-function with model weights might be shared betwee different batch sizes (check ongoing, important for st
 - cpp wrapper is neglectable small compared to layers

Memory allocation of Cpp wrapper

) el c-function consists mainly of model weights difference is result of pruning (bias and batch norm)

	N layers	AOT model *.o [kB]	trainable weig [kB]
<u>ze</u>	12	749	768
een titching)	25	1581	1619

33 Comparison

ΤF

- tf::Graph larger than model weights
 - About twice as large in shown tests
- tf::Session always larger than tf::Graph
 - Model weights copied into each session
- Absolute size per session quite large

AOT

- Footprint of compiled c-function solely driven by size of model weights
- Cpp wrappers reserve buffers for input, output and all intermediate layers, overhead negligible
 - One wrapper needed per expected batch size
 - c-function (weights) might be sharable
- Absolute sizes small compared to TF objects
- independent of TF (save ~ several hundred MB RAM)

What was done:

- First steps with a new compiler method for Tensorflow graphs were made
- CPU runtime and RAM usage of conventional method was compared
 - ▷ CPU runtime is equally good
 - ▷ RAM usage is promising

The future of AOT in CMSSW: Roadmap

• Short term

- Understand memory measurements in event processing phase
- Repeat CPU, RAM measurements with production model
 DeepTau (combined) already AOT compiled
- Enable AOT in central CMSDIST stack (bring patch live)

• Medium Term

- Automate model compilation within scram
- Provide tools for working with compiled model
 (input / output access + dynamic batching)

Ahead-of-time (AOT) compilation of Tensorflow models

Thank you for your attention!

Buffer
37 Allocated Buffers

- First 2 bits are used to define "kind", else is value
- kind = 0 \rightarrow layers, 1 \rightarrow temp (output),

 $2 \rightarrow \text{entrypoint (input)}, 3 \rightarrow \text{stackbuffer (intern)}$

• sum of 0 = *.0 file (loaded once)

// Number of buffers for the compiled computation. static constexpr size_t kNumBuffers = 25;

```
static const ::xla::cpu_function_runtime::BufferInfo* BufferInfos() {
   static const ::xla::cpu_function_runtime::BufferInfo
     kBufferInfos[kNumBuffers] = {
::xla::cpu_function_runtime::BufferInfo({262144ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({131072ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({32768ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({20480ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({514ULL, 0ULL}),
::xla::cpu_function_runtime::BufferInfo({161ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({33ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({16ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({4097ULL, ~0ULL})
     };
   return kBufferInfos;
```

Buffer value	Buffer size (B)	Buffer size (kB)	kind
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
131072	32768	32.0	0
32768	8192	8.0	0
20480	5120	5.0	0
514	128	0.125	2
161	40	0.0390625	1
33	8	0.0078125	1
16	4	0.00390625	0
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
4097	1024	1.0	1

38 Layer weights

- Formula to calculate number of parameters:
- 25 Hidden Layer network:

12 Hidden Layer network:

$32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 24*(128^{2} + 128 * 3) + 128 * 10 + 10 = 414538 --> 1658152$ Bytes Output Layer

$32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 11*(128^{2} + 128 * 3) + 128 * 10 + 10 = 196554 -> 786216$ Bytes Output Layer

40 Overview: Memory measurement with IgProf & Test Setup

- Use "Ignominious profiler" (IgProf, talk) in memory-profile mode
- Encapsulate the code to be measured in a function
 - Trackable by name
 - Easy readout with with SQLite and Python (sqlite3)
 - Separation of functions into (e.g.) graph loading, session loading, inference calls
- Workflow:

- IgProf measures malloc(), free() of heap memory
 - Different memory metrics:
 - ▷ MEM TOTAL: accumulated malloc()
 - ► MEM LIVE:
 - ▷ MEM LIVE PEAK: biggest single malloc()

difference malloc() and free() for given interval

41 Available metrics

- IgProf measures malloc(), free() of heap memory
 - Different memory metrics:
 - ▷ MEM_TOTAL: accumulated malloc()
 - ▷ MEM_LIVE: difference malloc(
 - ▷ MEM LIVE PEAK: biggest single malloc()
- Typical IgProf Report:

0/_		Counts		Calls		Paths		
Rank	total	to / from this	Total	to / from this	Total	Including child / parent	Total	S
	0.12	4,329,002	4,329,002	56,530	56,530	1	1	<u>V</u> :
[1697]	0.12	0	4,329,002	0	56,530	1	1	Pe
	0.12	4,329,002	4,329,002	56,530	56,530	1	1	te
		/						

Allocated memory in bytes

Number of allocations

difference malloc() free() for given interval

Symbol name

irtual thunk to PerfTesterTF::analyze(edm::Event const&, edm::EventSetup const&)

erfTesterTF::loadGraph()

ensorflow::loadGraphDef(std::___cxp11:ppsapstrippecharumctliocharotraidasubre>,

42 How does profiling (IgProf) works?

- Profiling divided into 3 steps:
- 1: Link Profiler with your program
 - IgProf set hooks before every function call
 - ▶ No change to application/build process necessary
- 2: Produce profile reports by execute the program
 - **IgProf** can run in 3 modes:
 - ▷ CPU-runtime (-pp) statistical sampling based performance profiles
 - ▷ memory (-mp) total dynamic memory allocations
 - ▶ Instrumentation () time spent in given function $(\pm ns)$
 - Store information of the parent and child stack frame
- 3: Analyse your profile
 - IgProf-analyse creates human-readable profile reports

Arguments of Redirect stdout/-err to logfile the program igprof -mp -o "profile_dir.mp" cmsRun ./cmssw_cfg.py &> "\$log_dir.mp.log"

43 General information about "profiler"

- Typical program problems: too slow, consumes too much memory, its doing both!
- Computer programs can be large and complex with multiple subprocess being invoked
 - Making it hard to identify inefficient parts of the program or bugs
- Profiling gives quantified answer about: "How much does each function in this program consume resource X?"
- Profiler collecting data mid execution of the program
 - If certain feature is not used, it will not show up in the profile
- CMS own profiler "Ignominious profiler" (IgProf) the (https://igprof.org/index.html)

44 Analyse the profile

- Process profile statistics using the "**IgProf-Analyser**" tool
 - Possible report output: ASCII-text and sqlite3-database
 - Preferred way: sqlite3 (need command line sqlite3 app)

igprof-analyse --sqlite -d -v -g -r "MEM_TOTAL" "profile_dir.mp" | sqlite3 "dst_report.sql3"

▶ Enables post-processing and plotting (pythons sqlite3)

- ▶ Enables web-navigation using "IgProf-Navigator", need CGI-open area
- Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding

45 Visualization of metrics

46 Inspect logs with the browser: 127.0.0.1:PORT

Sorted by cumulative cost

(Sort by	<u>y self cost</u>)			
Rank	Total %	Cumulative	Calls	Symbol name
<u>795</u>	0.79	28,413,804	8,042	<u>_PyObject_MakeTp</u>
<u>796</u>	0.78	28,397,192	222,976	<u>std::_Rb_tree_no</u>
<u>797</u>	0.78	28,354,666	23,778	<u>ClingMemberIterI</u>
<u>798</u>	0.78	28,052,796	302,319	<u>PerfTesterTF::lo</u>
800	0.78	28,052,788	302,318	<u>tensorflow::crea</u>
<u>799</u>	0.78	28,052,788	302,318	<u>tensorflow::crea</u>
<u>801</u>	0.77	28,046,280	26,956	TClass::CallShow
<u>802</u>	0.77	28,007,926	302,218	<u>tensorflow::Dire</u>
1698	0.12	4,329,002	56,530	<pre>tensorflow::load</pre>
<u>1697</u>	0.12	4,329,002	56,530	<u>PerfTesterTF::lo</u>

Call

ode<std::pair<std::___cxx11::basic_string<char, std::char_traits<char>, s Internal::DCIter::DCIter(clang::DeclContext*, cling::Interpreter*) <u>adSessions()</u> Create 1 or more Session ateSession(tensorflow::GraphDef const*, tensorflow::SessionOptions&) ateSession(tensorflow::GraphDef const*, int) vMembers(void const*, TMemberInspector&, bool) const'2 ectSession::Create(tensorflow::GraphDef const&) <u>|GraphDef(std::__cxx11::basic_string<char, std::char_traits<char>, std::allo</u> <u>Load 1 or more Graphs</u>

47 Measurement of the setup phase

- For the **setup phase**, we are only interested in MEM LIVE, i.e., amount of physical memory blocked by setup functions
- We know exactly which function / interval to measure (e.g. tf::loadGraph())
- Applies to global & per-thread measurement

48 Measurement of the event phase

- Open question: which metric to use?

 - MAX:

• For inference calls in event loop (analyze()), need to know maximum memory allocation (within the evaluation call (e.g. tf::run(session, ...))

difference between "after" - "before", should be 0 in absence of leaks LIVE PEAK: only measures largest, single allocation

"records the largest single allocation by any function" (link)

49 *.o file offset

• Pruning removed nodes that does not change the values: \triangleright Bias tensors removed (default value = 0)

 \triangleright Batch norm Gamma and Beta removed (default = 1, 0)

- (3 * 64 + 3 * 12 * 128 + 10)*4/1024 = 18.7890625
 - 64, 128, 10 are shape of network
 - bias, gamma and beta have same shape (thus * 3)
 - 4 since 32 Bit-float weights

c-function consists mainly of model weights difference is result of pruning (bias and batchnorm)

N layers	AOT model *.o [kB]	trainable weig [kB]
12	749	768
25	1581	1619

50 Potential advantages in CMSSW

• Current TF workflow

- Training in python, then export to frozen graph
- Load graph in C++ (once per process)
- Mount graph onto session (once per stream module instance)
- Use TF C++ API to feed, run and read
 - ▷ No simple handles for optimization

• Potential AOT benefits

- Easy to use graph and compiler optimizations
- Potentially faster (?), might depend on model
- Reduced memory footprint
 - ▷ No need to load the full libtensorflow.so
 - ▷ Model weights only once in memory
 - ▷ Virtually no memory overhead over multiple threads

51 Requirements / implications

For TF installation in CMSDIST

Needs to be installed with XLA support, not done yet but mostly (but described e.g. here) ▷ One incompatibility "eigen" in CMSDIST, but resolvable

For models

- Graph to be in "saved model" format (standard), exported with target signature(s), i.e., input shapes
- Custom operations need to be compositions of TF ops; currently not supported:
 - Some ops of standalone keras (use of tf.keras is anyway encouraged)
 - ▷ Some TF ops with unpredictable shape (e.g. tf.where)

• For inference code in CMSSW

- For now: created *.o files must be linked manually in BuildFiles \triangleright Vision: add hooks to BuildFiles and implement them to work with scram, e.g. 8"/>
- No more access to tensorflow::Tensor, input / output manipulation done on bare pointers ▷ Simple set of tools could provide convenience

<aot_compile model="/data/my_model" class="MyModel" batch_sizes="1 2 4</pre>

52 XLA

• Graphs can be pre-compiled with the saved_model_cli tool

my_graph (TF saved model)

- Based on domain-specific XLA (Accelerated Linear Algebra) compiler
- Pros:
 - Generated files self-contained and, in particular, do not require the TensorFlow runtime
 - Provide a simple function that can be simply called with network inputs
 - Can greatly improve performance
- Cons:
 - Compilation process challenging to automate in production
 - Batch sizes are fixed and need to be known a priori, or either padded or stitched

53 Potential advantages in CMSSW

• Current TF workflow

- Training in python, then export to frozen graph
- Load graph in C++ (once per process)
- Mount graph onto session (once per stream module instance)
- Use TF C++ API to feed, run and read
 - ▷ No simple handles for optimization

• Potential AOT benefits

- Easy to use graph and compiler optimizations
- Potentially faster (?), might depend on model
- Reduced memory footprint
 - ▷ No need to load the full libtensorflow.so
 - Model weights only once in memory \triangleright
 - ▷ Virtually no memory overhead over multiple threads

DPG 2023

SPONSORED BY THE

Federal Ministry of Education and Research

Marcel Rieger, Peter Schleper, <u>Bogdan Wiederspan</u>

56 Inference of neural network models in CMS

Context of this talk:

- Service work for "Machine Learning Production Group" for the CMS Experiment
- Talk focuses on improvement of **computing performance** of neural networks

Inference of neural network models in CMS

- Inference engine of CMS called CMSSW
- models run single threaded in CMSSW
- Why we in CMS care: limited memory resources per core (≈2GB)
- Many production models already implemented
 - DeepJet tagging, DeepFlavor, DeepMET (50-100 MB each) and even more in the pipeline!
- most models run in CPU only mode
- Naive solutions
 - buy more hardware
 - deploy only "important" models
 - **be more efficient**

57 Overview: Different ways to run Tensorflow (TF) models

AOT = "Ahead of time",compile code at build time into system dependent binary

58 How TensorFlow in graph mode operates

- TF generates a data flow graph representing the ML model
- Graphs consist out of kernel and edges
 - Kernel represent operations (Add, MatMul, Conv2D, ...)
 - ▶ TF runtime, called session, executes graph kernel
 - \triangleright Operation kernels are written in C++ for CPU or CUDA for GPU
 - Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

Beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT)

59 What does XLA and AOT do?

Enables several types of graph optimizations

- On graph level:
 - kernel fusion
 - No dependence on main Buffer analysis for allocating runtime memory (eliminates intermediate caches) libtensorflow.so
 - Common subexpression elimination
 - Pruning of unused kernel
- On hardware level:
 - TPU, GPU or CPU (different backends)

AOT

- Converts graphs into self-contained library
 - Graph becomes a series of compute kernels in C++

- Pros:
 - 1. Reduced memory footprint (shown later)
 - 2. Trivial multi-threading behavior
 - 3. Runtime potentially faster (shown later)
- Cons:
 - 1. No dynamic batching (fixed memory layout)
 - 2. Graph needs to be XLA compatible (shown later)

60 AOT Compilation workflow summary

61

Performance Study

Network and payload

- Created several feed-forward toy model
 - 12/25 layers, 128/256 units, batch-norm and SELU activation
- CPU runtime tests performed on login-node with CMSSW:
 - Compared <u>forward pass runtime</u> of <u>TF C++ vs. AOT</u>
 - inputs of the network are random values
 - Averaged runtimes over 500 calls, after 100 "warm up" calls
 - Tested event forward time for different batch sizes from 2⁰ to 2¹⁰
 - No XLA optimizations applied
- Memory tests using MemoryProfiler:
 - Measure memory consumption for setup phase

CPU runtime Study

64 CPU performance

1. Runtimes

- bigger batch sizes can be vectorised (decrease of time per event, till reaching saturation)
- Equal performance between TF and AOT
 - compare same color lines dotted (TF) vs solid (AOT)
- batch size 1 AOT is always better than TF

2. Multi-threading

- Performance test restricted to 1 thread
- CMS production models run in single thread

Memory Study

memory comparison TF graph vs AOT model					
N layers	TF graph [kB]	AOT model *.o [kB]	trainable weights [kB]		
12	1997	749	768		
25	3539	1581	1619		

TF graph more than 2x bigger than AOT
 TF graphs contain many meta information
 AOT model consist of (pruned) trainable weights

total memory consumption AOT (batch size 1) vs. TF (loading 1 mode			
N layers	AOT model *.o + Wrapper [kB]	TF Session + [kB]	
12	751	8599	
25	1583	13688	

- AOT by factor 10 smaller than TF
- AOT wrapper = buffer for input, output and intermediate layer (scales with batch size)
- wrapper size = total model size \rightarrow small (2kB)
- $\bullet~$ TF I/O tensors are not included in the measurement
- AOT fully independent of libTensorflow.so at runtime, saves several hundred MBs on top

Limits of AOT compilation

68 When does AOT compilation fail?

Possible reasons to fail AOT compilation:

- 1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)
- 2. No existing TF XLA implementation of the kernel
 - more XLA kernels added with each TF update

→ How to check if an XLA implementation exist for a given model:

- 1. Create XLA operation table during TF compilation
- 2. Get all used nodes within graph
- 3. Find match between table and graph

example: check AOT compatibility of feed-forward network with batch-norm for TF v. 1.4

Operation	lhas XLA	
MatMul	ITrue	
Identity Sub	True True	
 BiasAdd	ITrue	
Mul	True	
No0p	ITrue	
Rsqrt	ITrue	
Selu AddV2	True	network is n
ReadVariableOp	True	AOT compat
Const	ITrue	

69 Summary and Outlook:

- Summary:
 - a new method to run TF Graphs on CPU, called AOT, was presented
 - first runtimes showed that AOT is on average comparable fast as TF C++ models
 - ▶ batch size 1 in AOT is always faster than TF C++
 - AOT open gates to more optimization with different XLA level
 - AOT memory footprint is about factor 10 smaller than TF
 - presented limits of AOT compilation in the context of model building and constraints on ops

- CMS Outlook:

 - slight increase in performance expected, since production models run on single batch mode
- General Outlook:
 - documentation of compiling workflow will be written
 - tools for model preparation are in development

switch to AOT models would give room for more models in current hardware stack (save money)

you don't start from 0

Thank you for your attention!

SPONSORED BY THE

Federal Ministry of Education and Research

Marcel Rieger, Peter Schleper, <u>Bogdan Wiederspan</u>

Email: bogdan.wiederspan@uni-hamburg.de

BackUp

Technical Details
73 Requirements / implications

For TF installation in CMSDIST

Needs to be installed with XLA support, not done yet but mostly (but described e.g. here) ▷ One incompatibility "eigen" in CMSDIST, but resolvable

For models

- Graph to be in "saved model" format (standard), exported with target signature(s), i.e., input shapes
- Custom operations need to be compositions of TF ops; currently not supported:
 - Some ops of standalone keras (use of tf.keras is anyway encouraged)
 - ▷ Some TF ops with unpredictable shape (e.g. tf.where)

• For inference code in CMSSW

- For now: created *.o files must be linked manually in BuildFiles \triangleright Vision: add hooks to BuildFiles and implement them to work with scram, e.g. 8"/>
- No more access to tensorflow::Tensor, input / output manipulation done on bare pointers ▷ Simple set of tools could provide convenience

<aot_compile model="/data/my_model" class="MyModel" batch_sizes="1 2 4</pre>

74 Advantages of using Graphs

• Parallelism:

- identify operations that can be executed in parallel
- Computation optimization:
 - graphs are well-known data structure
 - optimisation possible.
 - ▷ e.g: prune unused nodes (size optimisation)
 - alternatives (speed optimisation)

• **Portability**:

- graphs are language- and platform-neutral
- Distributed execution:

 \triangleright detect redundant operations or sub-optimal graphs and replace them with the best

• Every graph's node can be placed on an independent device and on a different machine.

75 Understanding of memory for different phases

- Talk: Focus on setup phase, since we can not measure event phase yet.
- global allocate memory once, per thread for each thread
- Comparison: **TF multiple sessions vs. loading multiple AOT models**

Phase	Descripti	on	Action in TF	Action in AOT
global setup	p Before threads (stream modules) are launched		<pre>tf::loadGraph(); (load model and weights into memory)</pre>	loading compiled model (external c-function in *.o file)
setup per thread	Footprint per but before events a	thread, re analyzed	<pre>tf::loadSession(); (device placement & caching per thread)</pre>	CppWrapper w; (access to c-function & reserve buffers for input, output)
event phase	Resource consumption duri	ng event processing	<pre>tf::run(session,); (book inputs/outputs & evaluate model)</pre>	<pre>w.run(); (evaluate model)</pre>
Allocated memory [a.u.]	setup phase global per thread	threads 1, 2	event phase	teardown phase

program runtime [a.u.]

76 **TensorFlow** setup phase

- Launch multiple sessions with same frozen graph
 - Load graph once (global)
 - Copy graph into session (per-thread)
- Does not include creation of tensors yet!

Memory allocation of loadSessions()

code to load graph and sessions

linear scaling with sessions as expected

	Graph	contains	plenty	of	meta	data
--	-------	----------	--------	----	------	------

	N layers	loadGraph() [kB]	trainable weight [kB]
	12	1997	768
ded graph	25	3539	1619

77 AOT setup phase

- Load multiple AOT models of same batch size
 - Cpp wrapper created to call c-function (per thread)
 - ▷ Reserves buffers for inputs, outputs per model
 - ▷ off-set = model depending (slope)
 - Reserves buffer for intermediate layers once (*.o)
- Important: each Cpp wrapper handles only one batch siz
 - c-function with model weights might be shared betwee different batch sizes (check ongoing, important for st
 - cpp wrapper is neglectable small compared to layers

Memory allocation of Cpp wrapper

) el c-function consists mainly of model weights difference is result of pruning (bias and batch norm)

	N layers	AOT model *.o [kB]	trainable weig [kB]
<u>ze</u>	12	749	768
een titching)	25	1581	1619

78 XLA

• Graphs can be pre-compiled with the saved_model_cli tool

my_graph (TF saved model)

- Pros:
 - Generated files self-contained and, in particular, do not require the TensorFlow runtime
 - Provide a simple function that can be simply called with network inputs
 - Can greatly improve performance
- Cons:
 - Compilation process challenging to automate in production
 - Batch sizes are fixed and need to be known a priori, or either padded or stitched

79 Potential advantages in CMSSW

• Current TF workflow

- Training in python, then export to frozen graph
- Load graph in C++ (once per process)
- Mount graph onto session (once per stream module instance)
- Use TF C++ API to feed, run and read
 - ▷ No simple handles for optimization

• Potential AOT benefits

- Easy to use graph and compiler optimizations
- Potentially faster (?), might depend on model
- Reduced memory footprint
 - ▷ No need to load the full libtensorflow.so
 - Model weights only once in memory \triangleright
 - ▷ Virtually no memory overhead over multiple threads

80 Potential advantages in CMSSW

• Current TF workflow

- Training in python, then export to frozen graph
- Load graph in C++ (once per process)
- Mount graph onto session (once per stream module instance)
- Use TF C++ API to feed, run and read
 - ▷ No simple handles for optimization

• Potential AOT benefits

- Easy to use graph and compiler optimizations
- Potentially faster (?), might depend on model
- Reduced memory footprint
 - ▷ No need to load the full libtensorflow.so
 - Model weights only once in memory \triangleright
 - ▷ Virtually no memory overhead over multiple threads

81 TensorFlow memory allocation in setup phase

- Session = environment that allocates resources and ex
- Launch multiple sessions with same frozen graph
 - Load graph once (global)
 - Copy graph into session (per-thread)
- Does not include creation of tensors yet!

Memory allocation of loaded Sessions

xecute graph —	→ session u	ses meta data sav	ved in Graph
	N layers	loaded Graph [kB]	trainable we [kB]
	12	1997	768
	25	3539	1619

linear scaling with sessions as expected

loaded graph

82 **AOT** memory allocation in the setup phase

- Load multiple AOT models of same batch size
 - Cpp wrapper created to call c-function (per thread)
 - Reserves buffers for inputs, outputs per mode
 - Reserves buffer for intermediate layers once (*.o) \triangleright off-set = model depending (slope)
- Important: each Cpp wrapper handles only one batch s
 - c-function with model weights might be shared bety different batch sizes (check ongoing)
 - cpp wrapper is neglectable small compared to layers

Memory allocation of Cpp wrapper

) el d	c-function ifference is res	consists mainly of sult of pruning (bia	model weight as and batch
)	N layers	AOT model *.o [kB]	trainable weig [kB]
<u>size</u>	12	749	768
ween	25	1581	1619
c		1	1

83 Comparison of static memory allocation

Bare TF

- 1. tf::Graph larger than model weights (1/2 of graph are meta information)
- 2. tf::Session always larger than tf::Graph
 - Model weights are likely copied into each session
- 3. Absolute size per session quite large

AOT

1. Footprint of compiled c-function solely driven by size of model weights (small slope)

- C++ wrappers reserve buffers for input, output and all intermediate layers, almost no overhead
- 2. One wrapper needed per expected batch size
 - Model weights in c-function might be sharable
- 3. Absolute sizes small compared to bare TF objects
- Also fully independent of libTensorflow.so at runtime, saves several hundred MBs on top

Note: only need to look at **1** loaded model once cmssw#40161 is merged

how buffer are allocated

85 Allocated Buffers

- First 2 bits are used to encode "kind", else is value
- kind = 0 \rightarrow layers, 1 \rightarrow temp (output),

2 → entrypoint (input), 3 → stackbuffer (intern)

• sum of 0 = *.0 file (loaded once)

// Number of buffers for the compiled computation.
static constexpr size_t kNumBuffers = 25;

```
static const ::xla::cpu_function_runtime::BufferInfo* BufferInfos() {
   static const ::xla::cpu_function_runtime::BufferInfo
     kBufferInfos[kNumBuffers] = {
::xla::cpu_function_runtime::BufferInfo({262144ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({131072ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({32768ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({20480ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({514ULL, 0ULL}),
::xla::cpu_function_runtime::BufferInfo({161ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({33ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({16ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({4097ULL, ~0ULL})
     };
   return kBufferInfos;
```

Buffer value	Buffer size (B)	Buffer size (kB)	kin
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
131072	32768	32.0	0
32768	8192	8.0	0
20480	5120	5.0	0
514	128	0.125	2
161	40	0.0390625	1
33	8	0.0078125	1
16	4	0.00390625	0
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
4097	1024	1.0	1

SumBuffer: 750.2 kB,

ModelTypeBuffer Calculated: 767.8 kB

86 Layer weights

- Formula to calculate number of parameters:
- 25 Hidden Layer network:

12 Hidden Layer network:

$32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 24*(128^{2} + 128 * 3) + 128 * 10 + 10 = 414538 --> 1658152$ Bytes Output Layer

$32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 11*(128^{2} + 128 * 3) + 128 * 10 + 10 = 196554 -> 786216$ Bytes Output Layer

87 *.o file offset

• Pruning removed nodes that does not change the values: \triangleright Bias tensors removed (default value = 0)

 \triangleright Batch norm Gamma and Beta removed (default = 1, 0)

- (3 * 64 + 3 * 12 * 128 + 10)*4/1024 = 18.7890625
 - 64, 128, 10 are shape of network
 - bias, gamma and beta have same shape (thus * 3)
 - 4 since 32 Bit-float weights

c-function consists mainly of model weights difference is result of pruning (bias and batchnorm)

N layers	AOT model *.o [kB]	trainable weig [kB]
12	749	768
25	1581	1619

IgProf memory profiler

89 Overview: Memory measurement with IgProf & Test Setup

- Use "Ignominious profiler" (IgProf, talk) in memory-profile mode
- Encapsulate the code to be measured in a function
 - Trackable by name
 - Easy readout with with SQLite and Python (sqlite3)
 - Separation of functions into (e.g.) graph loading, session loading, inference calls
- Workflow:

- IgProf measures malloc(), free() of heap memory
 - Different memory metrics:
 - ▷ MEM TOTAL: accumulated malloc()
 - ► MEM LIVE:
 - ▷ MEM LIVE PEAK: biggest single malloc()

difference malloc() and free() for given interval

90 Available metrics

- IgProf measures malloc(), free() of heap memory
 - Different memory metrics:
 - ▷ MEM_TOTAL: accumulated malloc()
 - ▷ MEM_LIVE: difference malloc(
 - ▷ MEM LIVE PEAK: biggest single malloc()
- Typical IgProf Report:

	0/_	Counts		Calls		Paths		
Rank	total	to / from this	Total	to / from this	Total	Including child / parent	Total	S
	0.12	4,329,002	4,329,002	56,530	56,530	1	1	<u>V</u> :
[1697]	0.12	0	4,329,002	0	56,530	1	1	Pe
	0.12	4,329,002	4,329,002	56,530	56,530	1	1	<u>t</u> e
		1		١				

Allocated memory in bytes

Number of allocations

difference malloc() free() for given interval

Symbol name

91 How does profiling (**IgProf**) works?

- Profiling divided into 3 steps:
- 1: Link Profiler with your program
 - IgProf set hooks before every function call
 - ▶ No change to application/build process necessary
- 2: Produce profile reports by execute the program
 - **IgProf** can run in 3 modes:
 - ▷ CPU-runtime (-pp) statistical sampling based performance profiles
 - ▷ memory (-mp) total dynamic memory allocations
 - ▶ Instrumentation () time spent in given function $(\pm ns)$
 - Store information of the parent and child stack frame
- 3: Analyse your profile
 - IgProf-analyse creates human-readable profile reports

Arguments of Redirect stdout/-err to logfile the program igprof -mp -o "profile_dir.mp" cmsRun ./cmssw_cfg.py &> "\$log_dir.mp.log"

92 General information about "profiler"

- Typical program problems: too slow, consumes too much memory, its doing both!
- Computer programs can be large and complex with multiple subprocess being invoked
 - Making it hard to identify inefficient parts of the program or bugs
- Profiling gives quantified answer about: "How much does each function in this program consume resource X?"
- Profiler collecting data mid execution of the program
 - If certain feature is not used, it will not show up in the profile
- CMS own profiler "Ignominious profiler" (IgProf) the (https://igprof.org/index.html)

93 Analyse the profile

- Process profile statistics using the "**IgProf-Analyser**" tool
 - Possible report output: ASCII-text and sqlite3-database
 - Preferred way: sqlite3 (need command line sqlite3 app)

igprof-analyse --sqlite -d -v -g -r "MEM_TOTAL" "profile_dir.mp" | sqlite3 "dst_report.sql3"

▶ Enables post-processing and plotting (pythons sqlite3)

- ▶ Enables web-navigation using "IgProf-Navigator", need CGI-open area
- Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding

94 Visualization of metrics

95 Inspect logs with the browser: 127.0.0.1:PORT

Sorted by cumulative cost

(Sort by	<u>y self cost</u>)	<u>)</u>		
Rank	Total %	Cumulative	Calls	Symbol name
<u>795</u>	0.79	28,413,804	8,042	<u>_PyObject_MakeTp</u>
<u>796</u>	0.78	28,397,192	222,976	<u>std::_Rb_tree_no</u>
<u>797</u>	0.78	28,354,666	23,778	<u>ClingMemberIterI</u>
<u>798</u>	0.78	28,052,796	302,319	<u>PerfTesterTF::lo</u>
800	0.78	28,052,788	302,318	<u>tensorflow::crea</u>
<u>799</u>	0.78	28,052,788	302,318	<u>tensorflow::crea</u>
<u>801</u>	0.77	28,046,280	26,956	TClass::CallShow
<u>802</u>	0.77	28,007,926	302,218	<u>tensorflow::Dire</u>
<u>1698</u>	0.12	4,329,002	56 , 530	<u>tensorflow::load</u>
<u>1697</u>	0.12	4,329,002	56,530	<u>PerfTesterTF::lo</u>

Call

ode<std::pair<std::___cxx11::basic_string<char, std::char_traits<char>, s Internal::DCIter::DCIter(clang::DeclContext*, cling::Interpreter*) <u>adSessions()</u> Create 1 or more Session ateSession(tensorflow::GraphDef const*, tensorflow::SessionOptions&) ateSession(tensorflow::GraphDef const*, int) vMembers(void const*, TMemberInspector&, bool) const'2 ectSession::Create(tensorflow::GraphDef const&) <u>|GraphDef(std::__cxx11::basic_string<char, std::char_traits<char>, std::allo</u> <u>Load 1 or more Graphs</u>

96 Measurement of the setup phase

- For the **setup phase**, we are only interested in MEM LIVE, i.e., amount of physical memory blocked by setup functions
- We know exactly which function / interval to measure (e.g. tf::loadGraph())
- Applies to global & per-thread measurement

97 Measurement of the event phase

- Open question: which metric to use?

MAX:

• For inference calls in event loop (analyze()), need to know maximum memory allocation (within the evaluation call (e.g. tf::run(session, ...))

difference between "after" - "before", should be 0 in absence of leaks LIVE PEAK: only measures largest, single allocation

"records the largest single allocation by any function" (link)

98 Potential advantages in CMSSW

• Current TF workflow

- Training in python, then export to frozen graph
- Load graph in C++ (once per process)
- Mount graph onto session (once per stream module instance)
- Use TF C++ API to feed, run and read
 - ▷ No simple handles for optimization

• Potential AOT benefits

- Easy to use graph and compiler optimizations
- Potentially faster (?), might depend on model
- Reduced memory footprint
 - ▷ No need to load the full libtensorflow.so
 - ▷ Model weights only once in memory
 - ▷ Virtually no memory overhead over multiple threads

ML Production Inference Strategies

Updates on TensorFlow AOT and XLA

SPONSORED BY THE

ederal Ministry f Education and Research

- in CMSSW
- Inference and Batching Strategy
- Marcel Rieger, Peter Schleper, <u>Bogdan Wiederspan</u>
 - Title on frontpage
 - 01.01.2022

Summary from previous presentations

102 Reminder: TensorFlow in CMSSW

103 Reminder: What does XLA and AOT do?

Enables several types of graph optimizations

- On graph level:
 - kernel fusion
 - Buffer analysis for allocating runtime memory Pros: (eliminates intermediate caches) 1. Reduced memory footprint
 - Common subexpression elimination
 - Pruning of unused kernel
- On hardware level:
 - TPU, GPU or CPU (different backends)

AOT

- Converts graphs into self-contained library
 - Graph becomes a series of C++ compute kernels
 - No dependence on main libtensorflow.so

- 2. Trivial multi-threading behavior
- 3. Runtime potentially faster (depends on degree of optimization)
- Cons:
 - 1. No dynamic batching (fixed memory layout) but can be emulated

> my_graph.h

- (padding/stitching, shown later)
- 2. Graph needs to be XLA compatible

104 Results of previous contribution (link 🖙) on memory footprint

Bare TF

- 1. tf::Graph larger than model weights
 - About twice as large in shown tests
- 2. tf::Session always larger than tf::Graph
 - Model weights likely copied into each session
- 3. Absolute size per session quite large

AOT

- Footprint of compiled c-function solely driven by size of model weights
 - C++ wrappers reserve buffers for input, output
 and all intermediate layers, almost no overhead
- 2. One wrapper needed per expected batch size
 - Model weights in c-function might be sharable (*)
- 3. Absolute sizes small compared to bare TF objects
- Also fully independent of libTensorflow.so at runtime, saves ~300 MBs on top

Note: only need to look at **1** loaded model once cmssw#40161 is merged

105 Results of previous contributions (link 🖙) on model compatibility

Possible reasons to fail AOT compilation:

- 1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)
- 2. No existing TF XLA implementation of the kernel
 - more XLA kernel implementation added with each TF update

XLA compatibility check for a given model:

- 1. requires TF-to-XLA conversion table, created by: tf2xla_supported_ops --device="XLA_{CPU,GPU}_JIT"
- 2. Find match between table and nodes in graph, using cmsml tool:

example: check AOT compatibi feed-forward network with batch for TF v. 1.4

MatMul True Identity True		lhas XLA	Operation	
BiasAdd ITrue BiasAdd ITrue Mul ITrue Softmax ITrue NoOp ITrue Rsqrt ITrue Selu ITrue AddV2 IFalse ReadVariableOp ITrue Const ITrue	lity of -norm	ITrue ITrue ITrue ITrue ITrue ITrue ITrue ITrue IFalse ITrue ITrue ITrue	MatMul Identity Sub BiasAdd Mul Softmax NoOp Rsqrt Selu AddV2 ReadVariableOp Const	network AOT com

106 Checklist for moving to production

Possible application workflow (for PAGs/POGs/DPGs)

- 1. Read documentation on how to integrate AOT models in CMSSW
- 2. Train network and store as SavedModel
 - Either Keras model or tf.function
- 3. Integrate into CMSSW plugin
 - Add configuration to BuildFile.xml, e.g.: <aot_compile model="/data/my_model"</pre> class="MyModel" batch_sizes="1 2 4 8"/>
 - Perform inference via tfaot::Inference helper class
 - Compile
- 4. Measure runtimes and memory metrics

Action items (for us)

- → Add section to cms-ml.github.io/documentation
- → Provide convenience function to cmsml (90% done)
- → Provide AOT compatibility check to cmsml (90% done)
- → Automate compilation in scram tools

- → Create class wrapping bare objects created by AOT, providing easier API, dynamic batching, ...
- → Integrate AOT compilation tools into CMSDIST (85% done, need to integrate with general TF update)
- → Integrate with performance measurement tools (project by Nathan Prouvost, status shown soon)

- Setup
- Updates to TF installation (high priority)
 - \mathbf{V} Enable AOT in central CMSDIST stack (\rightarrow done by Marcel, see update here)
 - Find method to check XLA/AOT compatibility (presented last talk, see here)
 - - $(\rightarrow \text{ ongoing } \mathbb{Z})$
 - Automate model compilation within scram
- Measurements
 - \checkmark look into possible batch strategies (\rightarrow shown today)
 - Use DeepTau as testing model
 - **AOT** compile model
 - \mathbb{Z} Adjust inference workflow in CMSSW to use AOT (\rightarrow ongoing \mathbb{Z})
 - Repeat performance measurements
 - Measure memory consumption in events processing phase

Update performance measurement techniques $(\rightarrow created semi-automated tool based on IgProf)$ \mathbf{M} Move to more stable test machine (\rightarrow moved setup to cmsdev test machine, less volatile)

Provide tools for working with compiled model (tensor access + dynamic batching if needed)

Inference & batching strategies
109 Static batching and consequences for AOT

• AOT has no support for dynamic batching

No interest expressed by Google to add support in the near future

• Resulting challenges for AOT

- *Note:* most applications in CMSSW are single-batch anyway
- Model inference that uses batching (e.g. per jet / tau / ...) would require multiple compiled models with different static batch sizes
 - Each compiled AOT model consist of one header and one object file (with weights) • Having multiple models requires loading weights (*.o file) multiple times

 - → Not feasible to compile every possible batch size

Input (Python)

my_graph (TF saved model, default in TF2)

Possible solution

Emulate dynamic batching with different strategies

110 Possible AOT inference strategies

- Batching strategies to emulate dynamic batching: **normal**, **stitching**, **padding**
- **Example**: batch size 3

NB: more events require more sophisticated combinations

111 AOT inference strategies: padding and stitching

• batch strategy: padding

- runtime / batch always equals the unpadded **model** eq: $(8 - \{1, 2, 3\}) \approx 8$
- \rightarrow 0's are still fully evaluated

runtime for network with 25 layers, 128 nodes					
Events	Batch strategy	Runtime [ms] / batch	Mean runtime [ms]	Std runtime [ms]	
1	1	62.84	62.8	15.8	
2	2	101.28	202.6	18.6	
4	4	68.67	274.7	22.4	
8	8	63.93	511.5	28.2	
16	16	63.91	1022.5	50.3	
32	32	64.53	2064.9	206.3	
64	64	28.4	1817.8	79.0	
16	16 * 1	62.84	1005.4	63.2	
32	32 * 1	62.84	2010.9	89.4	
5	(8 - 3)	64.48	515.9	38.4	
6	(8 - 2)	64.46	515.6	38.5	
7	(8 - 1)	64.17	513.4	33.9	
5	4 + 1	131.51	337.52	27.4	
6	4 + 2	169.95	477.2	29.1	
7	4 + 2 + 1	232.79	540.08	33.1	

• batch strategy: stitching

- runtime / batch always slower than normal
- exception: single batching \rightarrow {16,32} * 1
- → stitching batch size 1 is preferred strategy

112 AOT inference strategies: stitching batch size 1 models

• preferred batch strategy is a hyper-

parameter depending on models complexity

- simple models (128 nodes) runtime
 - is dominated by **overhead**
- complex models (256 nodes) or large
 - **batch sizes** benefit from **vectorisation**
- batch size 1 fast for simple models
- threshold of strategy transition depends on the complexity of the model
 - vertical line indicates threshold
 - moves towards smaller batch size with increasing model complexity
 - independent of numbers of layers (no vectorisation benefit)
- preferred batch strategy:
 - stitching" left to the threshold
 - "normal" right to the threshold

Note: most applications in CMSSW are single-batch

ize 1	
18 409	6

113 Summary

- Gained insights into possible inference & batching strategies for AOT models to emulate dynamic batching
 - runtime most performant for smallest necessary batch size \rightarrow not feasible to compile every batch size
- presented first measurements of padding and stitching strategy
 - "padding" shows no runtime benefit compared to "normal"
 - "stitching" multiple models of batch size 1 together is most performant for less complex models
 - "normal" batching strategy preferred for complex models
- General: choice of batching strategy depends on models complexity
 - threshold of strategy transition is a hyperparameter \rightarrow needs to be measured for each model (we discuss about using Nathans automatised "ML Prof" for this)
- Further investigation necessary:
 - are models weights (*.o) shareable between model objects?

Backup

Model Building context

116 Today: Challenges during AOT compilation

Question: When does AOT compilation does (not) work?

(to gain insights to possible constraints for models to be compiled)

Compilation workflow

Flags during compilation (AOT XLA FLAGS, XLA DEBUG FLAGS)

117 Step 1: What does Grappler do in detail

- Get graph for specific signature (e.g. __inference_standard_lstm_17024_...)
- Optimize graph with TF's MetaOptimizer (more details)
 - Read progress logs as following:

<Optimizer Method>: Graph size <AFTER> (<DIFFERENCE>), <needed_time>

graph_to_optimize

model_pruner: Graph size after: 252 nodes (0), 963 edges (0), time = 5.325ms. implementation_selector: Graph size after: 252 nodes (0), 963 edges (0), time = 4.803ms. function_optimizer: Graph size after: 9221 nodes (8969), 17930 edges (16967), time = 356.309ms. common_subgraph_elimination: Graph size after: 7329 nodes (-1892), 15056 edges (-2874), time = 94.834ms. constant_folding: Graph size after: 7085 nodes (-244), 14618 edges (-438), time = 295.155ms. shape_optimizer: shape_optimizer did nothing. time = 13.713ms. arithmetic_optimizer: Graph size after: 7085 nodes (0), 14348 edges (-270), time = 129.22ms. layout: Graph size after: 7085 nodes (0), 14348 edges (0), time = 170.869ms. remapper: Graph size after: 7085 nodes (0), 14348 edges (0), time = 42.489ms. loop_optimizer: Graph size after: 7085 nodes (0), 14323 edges (-25), time = 59.98ms. dependency_optimizer: Graph size after: 2838 nodes (-4247), 5130 edges (-9193), time = 107.603ms. memory_optimizer: Graph size after: 2838 nodes (0), 5130 edges (0), time = 157.728ms. model_pruner: Invalid argument: Graph does not contain terminal node StatefulPartitionedCall_5. implementation_selector: implementation_selector did nothing. time = 0.402ms. function_optimizer: Graph size after: 2838 nodes (0), 5130 edges (0), time = 82.992ms. common_subgraph_elimination: Graph size after: 2528 nodes (-310), 4342 edges (-788), time = 26.611ms. constant_folding: Graph size after: 2411 nodes (-117), 4109 edges (-233), time = 82.159ms. shape_optimizer: shape_optimizer did nothing. time = 5.279ms. arithmetic_optimizer: Graph size after: 2411 nodes (0), 4109 edges (0), time = 49.24ms. remapper: Graph size after: 2411 nodes (0), 4109 edges (0), time = 14.993ms. dependency_optimizer: Graph size after: 2409 nodes (-2), 4105 edges (-4), time = 27.301ms. all_at_graph_to_optimize

2022-11-21 15:36:27.616914: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:1137] Optimization results for grappler item:

```
Optimization results for grappler item: __inference_standard_lstm_17024_specialized_for_StatefulPartitionedCall_1_StatefulPartitio
ned Call\_StatefulPartitioned Call\_StatefulPartitioned Call\_StatefulPartitioned Call\_rnn\_3\_StatefulPartitioned Call\_StatefulPartitioned Call\_Stat
```


118 Step 2: Op compatibility with XLA

- 2 possible reasons why op-kernels might fail to AOT compile
 - Kernel produces no predictable shapes at compile time (e.g tf.where)
 - No existing XLA implementation of the kernel
 - e.g. non-unrolled LSTM might not be AOT compatible (at least not in TF2.6)

ValueError: Detected unsupported operations when trying to compile graph __inference_standard_lstm_67406_specialized_for_StatefulPartitionedCal l_1 Stateful Partitioned Call_Stateful Partitioned Call_Stateful Partitioned Call_Stateful Partitioned Call_rnn_0 Stateful Partitioned Call_Stateful Partitioned Call tionedCall_at_graph_to_optimize_frozen_263[] on XLA_CPU_JIT: Enter (No registered 'Enter' OpKernel for XLA_CPU_JIT devices compatible with node {{node while/enter/_2}})while/enter/_2

- Node with the name "while/enter/ 2" is not XLA CPU JIT compatible
- kernel named "Enter" hat no XLA implementation
- **Goal:** need a tool that takes any model and
 - checks if a model is AOT / XLA compatible
- Can help already during the model development phase, rather than after the fact during integration!

provides feedback in case it isn't (e.g. list incompatible ops and suggest known alternatives)

119 XLA compatibility checks

Two ways to check model compatibility

Brute force method

- run graph in
 - TF1 by calling "tf.contrib.compiler.xla.compile(your_function)"
 - TF2 by calling "tf.xla.experimental.compile(your_function)"
 - TF2 by using the "tf.function(experimental_compile=True)" decorator
 - AOT compiler
- write wrapper to catch the first op name that is not compatible

More sophisticated method

- TF knows which OP is registered by a flag
- TF to XLA kernel implementation is defined in tensorflow/compiler/tf2xla/kernels
- the following function is used to register an Op: REGISTER_XLA_OP(NameObject('OperationName').TypeInformation, 'OpNodeName') e.g

REGISTER_XLA_OP(Name("MatMul").TypeConstraint("T", kMatmulTypes), MatMulOp);

a.compile(your_function)" mpile(your_function)" ntal_compile=True)" decorator

```
ag
ned in tensorflow/compiler/tf2xla/kernels
an Op:
```


General idea:

create table of <u>all compatible ops</u> and find matching graph nodes

1. Get the XLA op table

- Arch. dependent, can only be created during full TF compilation in CMSDIST: "bazel run -c opt -- tensorflow/compiler/ tf2xla:tf2xla_supported_ops --device=XLA_(CPU or GPU)_JIT"
- Both for CPU and GPU (example), contains
 - Compatible ops by name (unique)
 - All accepted type variations
- Tool already created
- To be integrated to cmsml once table is compiled in CMSDIST TF compilation (Marcel)

2. Check all nodes in a graph

- Input: SavedModel or Graph (*.pb)
- Get used operations from GraphDef
 - "name" node name (arbitrary identifier)
 - "op" used operation name (unique identifier)
 - "attr" attributes (e.g shape, inputs, types)
- → Build match with table and provide feedback

121 Example output method

Operations used by a normal feed-forward network with batch-norm

Operartion
MatMul
Identity
Sub
BiasAdd
Mul
Softmax
No0p
Rsqrt
Selu
AddV2
ReadVariable
Const

Working with IgProf

123 Analyse the profile

- Process profile statistics using the "**IgProf-Analyser**" tool
 - Possible report output: ASCII-text and sqlite3-database
 - Preferred way: sqlite3 (need command line sqlite3 app)

igprof-analyse --sqlite -d -v -g -r "MEM_TOTAL" "profile_dir.mp" | sqlite3 "dst_report.sql3"

- Enables post-processing and plotting (pythons sqlite3)
- Enables web-navigation using "IgProf-Navigator", need CGI-open area
- Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding

Sorted by cumulative cost

(Sort by	<u>y self cost</u>)	<u>)</u>		
Rank	Total %	Cumulative	Calls	Symbol name
<u>795</u>	0.79	28,413,804	8,042	<u>_PyObject_MakeTp</u>
<u>796</u>	0.78	28,397,192	222,976	<u>std::_Rb_tree_no</u>
<u>797</u>	0.78	28,354,666	23,778	<u>ClingMemberIterI</u>
<u>798</u>	0.78	28,052,796	302,319	<u>PerfTesterTF::lo</u>
800	0.78	28,052,788	302,318	<u>tensorflow::crea</u>
<u>799</u>	0.78	28,052,788	302,318	<u>tensorflow::crea</u>
<u>801</u>	0.77	28,046,280	26,956	TClass::CallShow
<u>802</u>	0.77	28,007,926	302,218	<pre>tensorflow::Dire</pre>
<u>1698</u>	0.12	4,329,002	56,530	<pre>tensorflow::load</pre>
<u>1697</u>	0.12	4,329,002	56,530	<u>PerfTesterTF::lo</u>

We inspected memory usage of Tensorflow regarding sessions and graphs

Call

de<std::pair<std::___cxx11::basic_string<char, std::char_traits<char>, s Internal::DCIter::DCIter(clang::DeclContext*, cling::Interpreter*) <u>adSessions()</u> Create 1 or more Session ateSession(tensorflow::GraphDef const*, tensorflow::SessionOptions&) ateSession(tensorflow::GraphDef const*, int) <u>Members(void const*, TMemberInspector&, bool) const'2</u> ectSession::Create(tensorflow::GraphDef const&) <u>|GraphDef(std::__cxx11::basic_string<char, std::char_traits<char>,</u> <u>Load 1 or more Graphs</u>

|--|

125 IgProf memory measurement: **Tensorflow** event phase

- Event phase measurement not there yet
- Problem 1: C++ TF interference has 2 ways to handle input and output tensor
 - 1. define input + output tensors in <u>each</u> new analyze call \rightarrow allocate memory every time in event phase
 - 2. create instance variables \longrightarrow allocate memory 1x in setup phase
- Problem 2: need proper memory definition to classify event memory (maximum allocation?)
 - depends on the batch size —> which batch size to look at?

program runtime [a.u.]

126 Understanding of memory for different phases

- Talk: Focus on setup phase, since we can not measure event phase yet.
- global allocate memory once, per thread for each thread
- Comparison: **TF multiple sessions vs. loading multiple AOT models**

Phase	Descripti	on	Action in TF	Action in AOT
global setup	Before threads (stream mo	dules) are launched	<pre>tf::loadGraph(); (load model and weights into memory)</pre>	loading compiled model (external c-function in *.o file)
setup per thread	Footprint per t but before events a	thread, ire analyzed	<pre>tf::loadSession(); (device placement & caching per thread)</pre>	CppWrapper w; (access to c-function & reserve buffers for input, output)
event phase	Resource consumption duri	ng event processing	tf::run(session,); (book inputs/outputs & evaluate model)	<pre>w.run(); (evaluate model)</pre>
Allocated memory [a.u.]	setup phase global per thread	threads 1, 2	event phase	teardown phase

program runtime [a.u.]

First performance study

128 Study outline

• Software stack

- slc7_amd64_gcc10 with CMSSW_12_4_0
- Using custom CMSDIST stack with TF XLA enabled and patched "eigen" library
- Network and payload
 - Created several feed-forward toy models
 - ▶ Up to 25 layers with 256 units, SELU activation
 - CPU runtime tests performed on login-node:
 - ▷ Compared forward pass runtime of TF and AOT in CMSSW

 - ▶ Tested event forward time for different batch sizes from 2^o to 2¹⁰ (saturation)
 - ► No XLA optimizations applied so far
 - Memory tests using IgProf:
 - ▶ Measure memory consumption for setup phase in multithreading scenario
 - ▶ Compare TF multiple sessions vs. multiple AOT models

 \triangleright Averaged runtimes over 500 calls, after ~100 "warm up" calls (measured with plain std::chrono)

129 CPU performance

1. Runtimes

Equal performance!

(comparison same color plots)

AOT without XLA optimizations

⊳ see bare minimum

2. Multi-threading

- CMSSW restrict program to 1 thread
- Weights and series of compute kernels exist **once** in memory (extern "C")
- accessible by TF through lightweight wrapper
 - ▷ can be loaded into multiple threads
 - negligible multi-threading overhead (see next slides)

130 **TensorFlow** setup phase

- Launch multiple sessions with same frozen graph
 - Load graph once (global)
 - Copy graph into session (per-thread)
- Does not include creation of tensors yet!

Memory allocation of loadSessions()

code to load graph and sessions

linear scaling with sessions as expected

	Graph	contains	plenty	of	meta	data
--	-------	----------	--------	----	------	------

	N layers	loadGraph() [kB]	trainable weight [kB]
	12	1997	768
ded graph	25	3539	1619

131 AOT setup phase

- Load multiple AOT models of same batch size
 - Cpp wrapper created to call c-function (per thread)
 - ▷ Reserves buffers for inputs, outputs per model
 - ▷ off-set = model depending (slope)
 - Reserves buffer for intermediate layers once (*.o)
- Important: each Cpp wrapper handles only one batch siz
 - c-function with model weights might be shared betwee different batch sizes (check ongoing, important for st
 - cpp wrapper is neglect able small compared to layers

Memory allocation of Cpp wrapper

) el c-function consists mainly of model weights difference is result of pruning (bias and batch norm)

	N layers	AOT model *.o [kB]	trainable weig [kB]
<u>ze</u>	12	749	768
een titching)	25	1581	1619

TF and XLA insights

133 How TensorFlow operates

- TF generates a data flow graph representing the ML algorithm (model)
- Graphs consist out of nodes/kernel and edges
 - Nodes represent operations (Add, MatMul, Conv2D, ...)
 - ▶ TF runtime execute graph nodes
 - Operation kernels are written in C++ for CPU or GPU (e.g. with Cuda) \triangleright
 - ▶ Execution runtime depends on the number of calls and complexity of the kernel
 - Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

• This how tensorflow currently operates! The new part is: **optimizations (XLA)** and **independence (AOT)**

Example of a 1-layer network Nodes are math operations and placeholder variables, connecting lines are edges

134 Node Fusion example

reduction of Ops overhead from 3 to 2

- 1 read of input in A
- 1 write of A to memory
- 2 reads of output A from memory

Rules when to fuse:

- no increase in byte transfer
- producer ops is fused with "_all_" consumers
 if one op is not fuseable, no fusion happens

2 reads of input to A' and A''

 $\begin{array}{l} \mathsf{A}' = \mathsf{A}{-}{>}\mathsf{B} \\ \mathsf{A}'' = \mathsf{A}{-}{>}\mathsf{C} \\ \mathsf{A} \text{ is cloned and fused with B and C} \end{array}$

135 What is a SavedModel?

- SavedModel is the prefered way to save Models in TF2.X
- A SavedModel is a directory containing
 - trained parameters (weights, and variables)
 - The MetaGraphDef container, which contains:
 - the GraphDef (*.pb file) does not require the original model code to run
 - Iow-level definition of the graph (including list of nodes, input and output connections)
 - the SaverDef A class to save and restore variables from checkpoints ----
 - multiple signatures \longrightarrow can contain multiple variants of the model (multiple v1.MetaGraphDefs, identified with the --tag set flag to saved model cli).

tensorflow/compiler/jit/build xla ops pass.cc tensorflow/compiler/jit/compilability check util.cc tensorflow/compiler/jit/deadness analysis.cc tensorflow/compiler/jit/encapsulate subgraphs pass.cc tensorflow/compiler/jit/encapsulate xla computations pass.cc tensorflow/compiler/jit/introduce_floating_point_jitter_pass.cc tensorflow/compiler/jit/mark for compilation pass.cc tensorflow/compiler/jit/resource operation safety analysis.cc tensorflow/compiler/jit/xla activity logging listener.cc tensorflow/compiler/jit/xla cluster util.cc tensorflow/compiler/jit/xla cpu device.cc tensorflow/compiler/jit/xla gpu device.cctensorflow/compiler/tf2xla/const analysis.cc tensorflow/compiler/tf2xla/xla op registry.cctensorflow/compiler/xla/parse flags from env.cctensorflow/ compiler/mlir/mlir graph optimization pass.cc

137 Files used additionally by XLA

xla/service/all_gather_combiner.cc xla/service/all reduce combiner.cc xla/service/batchnorm expander.cc xla/service/bfloat16 normalization.cc xla/service/buffer assignment.cc xla/service/call graph.cc xla/service/call_inliner.cc xla/service/conditional canonicalizer.cc xla/service/conditional simplifier.cc xla/service/copy_insertion.cc xla/service/dfs hlo visitor.cc xla/service/dfs hlo visitor with default.h xla/service/dot_merger.cc xla/service/dump.cc xla/service/dynamic dimension inference.cc xla/service/dynamic dimension simplifier.cc xla/service/dynamic padder.cc xla/service/executable.cc xla/service/flatten_call_graph.cc xla/service/generic_transfer_manager.cc xla/service/gpu/buffer_comparator.cc xla/service/gpu/cudnn_fused_conv_rewriter.cc xla/service/gpu/fusion merger.cc xla/service/gpu/gemm_algorithm_picker.cc xla/service/gpu/gemm_thunk.cc xla/service/gpu/gpu compiler.cc xla/service/gpu/gpu_conv_algorithm_picker.cc xla/service/gpu/gpu_conv_rewriter.cc xla/service/gpu/gpu conv runner.cc xla/service/gpu/gpu executable.cc xla/service/gpu/hlo to ir bindings.cc xla/service/gpu/horizontal input fusion.cc xla/service/gpu/horizontal loop fusion.cc xla/service/gpu/ir_emitter_unnested.cc xla/service/gpu/kernel thunk.cc xla/service/gpu/launch dimensions.cc xla/service/gpu/llvm_gpu_backend/gpu_backend_lib.cc xla/service/gpu/multi output fusion.cc xla/service/gpu/nvptx compiler.cc xla/service/gpu/nvptx helper.cc xla/service/gpu/parallel loop emitter.cc

xla/service/gpu/ reduction_dimension_grouper.cc xla/service/gpu/ reduction layout normalizer.cc xla/service/gpu/reduction_splitter.cc xla/service/gpu/stream_assignment.cc xla/service/gpu/tree_reduction_rewriter.cc xla/service/heap_simulator.cc xla/service/hlo_alias_analysis.cc xla/service/hlo_computation.cc xla/service/hlo_computation.h xla/service/hlo_constant_folding.cc xla/service/hlo_cse.cc xla/service/hlo_dataflow_analysis.cc xla/service/hlo_dce.cc xla/service/hlo_evaluator.cc xla/service/hlo_graph_dumper.cc xla/service/hlo_instruction.cc xla/service/hlo_instructions.cc xla/service/hlo_instructions.h xla/service/hlo_memory_scheduler.cc xla/service/hlo_module.cc xla/service/hlo_parser.cc xla/service/hlo_pass_fix.h xla/service/hlo_pass_pipeline.cc xla/service/hlo_phi_graph.cc xla/service/hlo_proto_util.cc xla/service/hlo_schedule.cc xla/service/hlo_verifier.cc xla/service/instruction_fusion.cc xla/service/layout assignment.cc xla/service/llvm_ir/fused_ir_emitter.cc xla/service/local_service.cc xla/service/platform_util.cc xla/service/reduce_scatter_combiner.cc xla/service/reshape mover.cc xla/service/service.cc xla/service/shape_inference.cc xla/service/slow_operation_alarm.cc xla/service/sort_simplifier.cc xla/service/stream_pool.cc xla/service/tuple_points_to_analysis.cc xla/service/while_loop_constant_sinking.cc xla/service/while_loop_simplifier.cc xla/shape.cc xla/shape_util.cc xla/util.cc

jit/clone_constants_for_better_clustering.cc jit/kernels/xla ops.cc jit/xla compilation cache.cc jit/xla_launch_util.cctf2xla/graph_compiler.cc tf2xla/kernels/reduction ops common.cc tf2xla/kernels/reshape op.cc tf2xla/xla_compilation_device.cc tf2xla/xla compiler.cc tf2xla/xla_context.ccmlir/mlir_graph_optimization_pass.cc mlir/tensorflow/translate/import model.cc mlir/tensorflow/utils/bridge logger.cc mlir/tensorflow/utils/dump_mlir_util.cc mlir/xla/transforms/xla_legalize_tf.ccxla/literal_comparison.cc xla/parse flags from env.cc

138 Layer weights

- Formula to calculate number of parameters:
- 25 Hidden Layer network:

12 Hidden Layer network:

414538 / 196554 = 2,109

+ 128 * 10 + 10 = 414538 --> 1658152 Bytes Output Layer

• $32 * 64 + 3 * 64 + 64 * 128 + 128 * 3 + 11*(128^{2} + 128 * 3) + 128 * 10 + 10 = 196554 -> 786216$ Bytes Output Layer

139 Allocated Buffers

- First 2 bits are used to define "kind", else is value
- kind = 0 \rightarrow layers, 1 \rightarrow temp (output),

2 → entrypoint (input), 3 → stackbuffer (intern)

• sum of 0 = *.0 file (loaded once)

// Number of buffers for the compiled computation. static constexpr size_t kNumBuffers = 25;

```
static const ::xla::cpu_function_runtime::BufferInfo* BufferInfos() {
   static const ::xla::cpu_function_runtime::BufferInfo
     kBufferInfos[kNumBuffers] = {
::xla::cpu_function_runtime::BufferInfo({262144ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({131072ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({32768ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({20480ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({514ULL, 0ULL}),
::xla::cpu_function_runtime::BufferInfo({161ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({33ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({16ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({19ULL, ~0ULL}),
::xla::cpu_function_runtime::BufferInfo({4097ULL, ~0ULL})
     };
   return kBufferInfos;
```

Buffer value	Buffer size (B)	Buffer size (kB)	kind
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
262144	65536	64.0	0
131072	32768	32.0	0
32768	8192	8.0	0
20480	5120	5.0	0
514	128	0.125	2
161	40	0.0390625	1
33	8	0.0078125	1
16	4	0.00390625	0
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
19	4	0.00390625	3
4097	1024	1.0	1

