+ X

Ahead-of-time (AOT) compilation of Tensorflow models

Introduction to Tensorflow (TF) with
Accelerated Linear Algebra (XLA) and
Ahead-of-time (AOT) compilation in CMSSW

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

UH

_i_ti_
M Universitat Hamburg

2 Motivation: Why CMS care about efficiency

o CMS workflow

m strong memory constrained: =2GB per cpu core
e Many production models already implemented

n e.g. Deeplet, DeepMET, DeepTau (50-100 MB each) — and even more in the pipeline!

In Summary: its getting crowded

” e —
i il E %
- 12
Lo

- E———]

e Naive solutions

s buy more hardware %
= deploy only "important”" models %

= more efficient deployment of models (Focus of this talk)

3 Overview: Different ways to run Tensorflow (TF) models

Focus of this talk: (left/green path)
deploy TF models using XLA and AOT on CPU

AXLA ="Accelerated Linear Algebra"

AOT = "Ahead of time"
compile code at build time into

system dependent binary
normal TF

AOT usage
activated using

C- XLA Flags

CPU CPU, GPU CPU, GPU

4 How TensorFlow operates in graph mode

e [|F generates a data flow graph representing the ML model

e Graphs consist out of kernel and edges
s Kernel represent operations (Add, MatMul, Conv2D, ...)
> TF runtime, called session, executes graph kernel

~ Operation kernels are written in C+4 for CPU or CUDA for GPU

s Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

biases W Re.

weights

examples

labels softmax Example of a 1-layer network

e Beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT)

5 What does XLA and AOT do?

AOT

Enables several types of graph optimizations e Converts graphs into self-contained library

o On graph level: (header-object-pair)
m kernel fusion (main speed benefit)

s Graph becomes series of compute kernels in C++

m Buffer analysis for allocating runtime memory . No need to load TensorFlow

(eliminates intermediate caches)

s Common subexpression elimination

s Pruning of unused kernel Input F Output@

e On hardware level:
s TPU, GPU or CPU (different backends) my_graph

(TF saved model,

e Universal: JAX, PyTorch and ONNX use XLA default in TF2)

__——>my_graph.h

my_graph.o

+ AOT

https://arxiv.org/pdf/2301.13062.pdf

6 AOT Compilation workflow summary

Step 1: Prepare graph Step 2: Tensorflow Optimization Step 3: XLA Optimization

save model with fixed batch size optimization level optimization level
(static memory layout) configurable configurable

W add Relu

weights
matmul

examples

MetaOptimizer

EL RS softmax

Step 4: AOT compiled using TF "saved_model_cl1" tool @

Input Final Output
my_graph.h

XLA_optizmized AOT

tati h
static my_grap my_graph.o

CPU runtime and Memory Study

8 Performance study outline

Network and payload

e Created several feed-forward toy models
m 12/25 layers, 128/256 units, batch-norm and SELU activation

1. CPU runtime tests performed on login-node with CMSSW:

s Compared forward pass runtime of TF C vs. AOT in 1 SingleThread scenario

m inputs of the network are random values

s Averaged runtimes over 500 calls, after 100 "warm up" calls (to eliminate caching effects)

s lested event forward time for different batch sizes

2. Memory tests using MemoryProfiler (IgProf)

3. Development of batching strategies for different scenarios and compare CPU runtime
(not shown (due &): study can be found here)

https://igprof.org/
https://indico.cern.ch/event/1267596/contributions/5361721/attachments/2634168/4556551/2023-04-24_bogdan_mlprod_inference_strategies.pdf

9 CPU performance

e big batch sizes can be vectorised (decrease of time per event, till reaching saturation)

e In vectorised regime: TF slightly better than AOT
e Single batch: AOT is always better than TF

e overall comparable performance between C++ TF and AOT

s default XLA optimizations applied = bare minimum

—&— AOT12L 128N | | _ # Layer

-4 TF12L 128N B
—— AOT 12L 256N N = # Nodes

. @ TF 12L 256N
—— AOT 25L 256N | dotted =TF

e @ TF 25L 256N solid = AOT

.
" ua
~
L]
"

[
o
L

time per event [ms]
o

""" ® . q...
A Tt
1070 . u | H \ ‘ 1 ‘ 1 :
" 2 > >3 >4 25 26 27 28 22 210
batch size

(Link: cpu performance study)

https://indico.cern.ch/event/1132810/contributions/4857985/attachments/2449093/4196876/2022-05-23_bogdan_mlprod.pdf

10 Memory reservation comparison

AOT reserve ...

e only once its models weights (*.o file)

Memory usage comparison

e every time buffer for input, output and between 12 and 25 layers networks
intermediate layer (scales with batch size)
. !
TF reserve ... —_ - i ™
s "
e only once its graph=(models weights 4+ meta data) > _ - e -
. : : : : v -
e every time its session=(runtime enviroment) ﬁ - __,—‘”
-
: . -
e every time buffer for input and output g —e= AOT 12 layer + *.0
: === AOT 25 layer + *.0
(not included here) O —e= TF 12 layer + graph
E =®= TF 25 layer + graph
o
- e
In comparions: ©
—_—
e AOT size by factor 10 smaller than TF 2
_ < 10°
m e.g. DeepTau would be 10 MB instead of 100MB e
e AOT scales great with number of loaded models 0 1 > 3 '

= barely seeable slope loaded models

o AOT fully independent of TensorFlow

at runtime, saves ~300 MBs on top

m saves also 1 min of loading TF
(Link: memory study)

https://indico.cern.ch/event/1180977/#4-updates-of-ahead-of-time-com

Limits of AOT compilation

12 When does AOT compilation fail?

Possible reasons to fail AOT compilation:

1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)

= known model affected by this: LSTMs without padding
2. No existing TF XLA implementation of the kernel

» frequent checking: more XLA kernels added with each TF update
example:
AOT compatibility of
feed-forward network for old TF v. 1.4

Operation lhas XLA

MatMul
Identity
Sub
BiasAdd

Created tool to check Mul

: Softmax
if models op nodes NoOp

has XLA implementation Rsqrt .
Selu network is not

AddVZ2 | False
ReadVariableOp | True
Const | True

AOT compatible

(Link: compatiblity study)

https://indico.cern.ch/event/1219738/contributions/5154212/attachments/2555559/4403617/2022-11-28_bogdan_mlprod.pdf

13 Summary

What was done:

e shown new compilation and deployment method for Tensorflow graphs

e showed that AOT is on average comparable fast as TF C++ models
s AOT open gates to more optimization with different XLA level
e AOT memory footprint of models is about factor 10 smaller than TF

Your turn with AOT:

e Dev tool to check model compatibility (here)
e Dev tools for preparation and compilation (here)
e Example for compilation without helper tools and basic use (here)
e Recommended usage: Use an wrapper made by us (here)
m wrapper takes care of:
~ dynamic types
> emulation of batch sizes

~ pointer handling

https://github.com/cms-ml/cmsml/blob/master/cmsml/scripts/check_aot_compatibility.py#L16C5-L16C28
https://github.com/cms-ml/cmsml/blob/master/cmsml/scripts/compile_tf_graph.py#L102C5-L102C16
https://gist.github.com/riga/f9a18023d9f7fb647d74daa9744bb978#file-test_model-cc-L15-L34
https://gist.github.com/riga/4ddd098204cd6168acb4fd962a8d2475#file-aottestplugin-cc-L151-L167

SPONSORED BY THE

o CLUSTER OF EXCELLENCE #f | feteroinsn
e romcnne 1o oo QUANTUM UNIVERSE

and Research

"Ahead-of-time" compilation of Tensorflow models

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

Email: bogdan.wiederspan@uni-hamburg.de

N
V N

mailto:bogdan.wiederspan@uni-hamburg.de

15 FAQ: in descending frequency

e Can you use this on PyTorch models?
s No. You need to rebuild your model in TensorFlow
s Well actually, there is an experimental PyTorch AOT (here)
e You said "no predictable shapes" are a problem, can you convert LSTM, RNNs etc.?
» No, but padded time-series-networks (fixed shape) should work in theory (we didn't tested this yet)
e You only showed that this works for FeedForward Model what about other model architectures?
m [esting all models is impossible, currently FeedForward and DeepTau V1 were converted successfully

m Harsh truth: Welcome on Board Beta-Tester!

e What about support for different CPU Architectures?

m can be extended if LLVM supported is there, (see here), x64, ARM is tested by google

> given by target-triple string: "ARCHITECTURE-VENDOR-OPERATING SYSTEM"
> e.g. (x86 64 pc linux)

https://pytorch.org/docs/stable/export.html
https://www.tensorflow.org/xla/developing_new_backend

BackUp FPS 2022

17 CPU performance

1. Runtimes

e bigger batch sizes can be vectorised (decrease

of time per event, till reaching saturation)

e Equal performance between TF and AOT

m compare same color lines
dotted (TF) vs solid (AOT)

e batch size 1 AOT is always better than TF

2. Multi-threading

e Performance test restricted to 1 thread

e CMS production models run in single thread

time per event [ms]

=
o
.'..

—&— AOT 12L 128N
-4 TF 12L 128N
—— AOT 12L 256N
4@ TF 12L 256N
—&— AOT 25L 256N
-4 TF 25L 256N

20 21 22 23 24 25 26 27 28 29 210
batch size

18 Memory comparison AOT vs TF

memory comparison
TF graph vs AOT model

TF graph
N layers KB]
12 1997
25 3539

AOT model
*.0 [kB]

749

1531

trainable
weights
[kB]

763

1619

e [F graph more than 2 times bigger than AOT
— [F graphs contain many meta information
e AOT model consist of (pruned) trainable weights

total memory consumption
AOT (batch size 1) vs. TF (loading 1 model)

N layers

+ Wrapper
12 51
25 1533

AOT model *.0 TF Session + Graph

kB kB

8599

13633

AOT by factor 10 smaller than TF

AOT wrapper = buffer for input, output and

intermediate layer (scales with batch size)

wrapper size = total - model size —» small (2kB)

TF /O tensors are not inc

uded in the measurement

AOT fully independent of LibTensorflow.so
at runtime, saves ~300 MBs on top

19 How TensorFlow in graph mode operates

e [|F generates a data flow graph representing the ML model

e Graphs consist out of kernel and edges
s Kernel represent operations (Add, MatMul, Conv2D, ...)
> TF runtime, called session, executes graph kernel

~ Operation kernels are written in C+4 for CPU or CUDA for GPU

s Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

biases W Re.

weights

examples

labels softmax Example of a 1-layer network

e We are going: beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT

Old Presentations

¥ n CMSSW

Ahead-of-time (AOT) compilation of Tensorflow models

First steps with Tensorflow (TF) with
Accelerated Linear Algebra (XLA) and
Ahead-of-time (AOT) compilation in CMSSW

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

UH

_i_ti_
M Universitat Hamburg

23 Bigger picture: The "usual" workflow

o Workflow:

s [rain your model in python —» environment of your choice

= Run the trained model (e.g. for your analysis) in the same environment

TensorFlow+Keras Py Torch scikit-learn XGBoost

1E (O of2. XGB

Training engine
(Python in your env.)

24 This talk: Inference in CMSSW U-Hi'h“

e CMS runs your model in CMSSW (through an inference engine)

e Why we should care: limited memory resources per core (=2GB)

v = TensorFlow+Keras Py Torch scikit-learn XGBoost
o Many models already implemented .S o .
. - ~

= DeeplJet tagging X . X GB

0
s DeepFlavor g c

g
m DeepMET = =

S |
—_— A torch.onnx default
— and even more in the pipeline!
tf2onnx sklearn-onnx

e Naive solutions

= buy more hardware% _qg’
= deploy only "important" models% :C,Dg 1F X B
m be more efficient § é
S O TensorFlow ONNX XGBoost
uq:-’ CPU

25 Bigger picture: Tensorflow in CMSSW Uﬂﬁ

This talk focuses on: being more efficient with Tensorflow models using XLA and AOT on CPU (left/green path)

AOT

seems possible but
not documented

CPU GPU CPU GPU

26 How TensorFlow operates

e TF generates a data flow graph representing the ML algorithm (model)

e Graphs consist out of nodes/kernel and edges
s Nodes represent operations (Add, MatMul, Conv2D, ...)
> TF runtime execute graph nodes
> Operation kernels are written in C4++ for CPU or GPU (e.g. with Cuda)
~ Execution runtime depends on the number of calls and complexity of the kernel

s Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

biases —%—x
(add >—-< RelU
weights
BN Example of a 1-layer network
C matmul CsoﬂmaXD Nodes are math operations and placeholder variables,
- / connecting lines are edges
examples
labels /

e This how tensorflow currently operates! The new part is: optimizations (XLA) and independence (AOT)

27 XLA and AOT

XLA AOT

e Compiler framework for linear algebra e Converts graph into self-contained library
e Enables several types of graph optimizations: s Graph becomes a series of standalone
s Hardware-dependent: compute kernels
~ TPU GPU or CPU s No dependence on main libtensorflow.so
= Hardware-independent: e Pros (more on next slides):
~ Operation/kernel fusion 1. Reduced memory footprint

~ Common subexpression elimination 2. Trivial multi-threading behavior

~ Buffer analysis for allocating runtime memory 3. Runtime potentially faster —> depends on degree

. of enabled XLA optimizations and model
> Pruning of unused nodes

e Cons:

= No dynamic batching, but can be conveniently

emulated (stitching)

my_graph

/-> my_graph.h = models with unpredictable shape at compile time
(TF saved model) \

are not AOT compatible
T my_graph.o

NOT — DeepTau (combined) already AOT compiled!
I

28 Study outline

e Software stack

s slc/_amdo4_gccl® with CMSSW_12_4_0
s Using custom CMSDIST stack with TF XLA enabled and patched "eigen" library

e Network and payload

m (Created several feed-forward toy models

>~ Up to 25 layers with 256 units, SELU activation

s CPU runtime tests performed on login-node:

~ Compared forward pass runtime of TF and AOT in CMSSW

>~ Averaged runtimes over 500 calls, after ~100 "warm up" calls (measured with plain std: :chrono)
~ Tested event forward time for different batch sizes from 20 to 210 (saturation)

=~ No XLA optimizations applied so far

= Memory tests using IgProf:
>~ Measure memory consumption for setup phase in multithreading scenario

>~ Compare TF multiple sessions vs. multiple AOT models

29 CPU performance

1. Runtimes

s Equal performance!

(comparison same color plots) A AOT 12L 128N
s AOT without XLA optimizations —:— AGT 121 256N
_ Te, -4 TF 12L 256N
~ see bare minimum g ‘:‘ AOT - 250N
2. Multi-threading "q&’) 10-1
m CMSSW restrict program to 1 thread >
s Weights and series of compute kernels exist g
once in memory (extern "C") GE-’
m accessible by TF through lightweight +
wrapper
> can be loaded into multiple threads 1o T 2 s o a5 = o ok
> negligible multi-threading overhead batch size

(see next slides)

30 Understanding of memory for different phases

e lalk: Focus on setup phase, since we can not measure event phase yet.

e global allocate memory once, per thread for each thread

e Comparison: TF multiple sessions vs. loading multiple AOT models

Phase Description Action in TF Action in AOT
global setup Before threads (stream modules) are launched £ :1oad.Gr'ap.hC); loading complled model
(load model and weights into memory) (external c-function in *.o0 file)
setup per Footprint per thread, tf::loadSession(); C?pWr_'apzer W buffers £
thread but before events are analyzed (device placement & caching per thread) (access to ¢ l?:;tlsnout;iﬁrve S
. . . tf::run(session, ...); w.run();
vent ph ’ ’ ’
event phase Resource consumption durlng event processing (book inputs/outputs & evaluate model) (evaluate model)

setup phase event phase teardown phase

global per thread

\V
>
&
9
/)
<>

Allocated memory [a.u.]

program runtime [a.u.]

31 TensorFlow setup phase

e Launch multiple sessions with same frozen graph vold ”:";T';’Ste""i 1 fl‘ raph() { (e
graph_def = tensorflow:: loadGraphDef(graph_path);
s Load graph once (global) Y
_ _ void PerfTesterTF:: loadSessions() {
s Copy graph into session (per-thread) std: :vector< tensorflow::Session+ > loaded_sessions;
_ _ loaded_sessions.reserve(number_of loaded sessions);
e Does not include creation of tensors yet! for (int i = @3 i < number of loaded sessions: i++) {
session = tensorflow::createSession(graph_def);
loaded_sessions.push back(session);
Memory allocation of 1ToadSessions() }
35000 - .
—e— 12 layer, 128 nodes code to load graph and sessions
—e= 25 layer, 128 nodes Ii|near scaling with
— 30000 - —
L sessions as expected
g 25000 -
o
CED 20000 -
z Graph contains plenty of meta data
g P N | loadGraph() trainable weights
(0 dyers
s kB kB
O 10000 - [] []
<
c000 - 12 1997 768
[
<+——]opaded graph
N T N B arap
0 1 2 3 4 5 25 3539 / 1619
loaded tf sessions

32 AOT setup phase Uﬂ.}.‘-

e Load multiple AOT models of same batch size

s Cpp wrapper created to call c-function (per thread) c-function consists mainly of model weights

~ Reserves buffers for inputs, outputs per model difference is result of pruning (bias and batch norm)

~ off-set = model depending (slope) AOT model *.o trainable weights

N layers KB KB]

s Reserves buffer for intermediate layers once (*.0)

e Important: each Cpp wrapper handles only one batch size 12 749 768

s c-function with model weights might be shared between
different batch sizes (check ongoing, important for stitching) 25 1561 1619

m cpp wrapper is neglectable small compared to layers

Memory allocation of Cpp wrapper total Memory allocation
! —o== 12 layer, 128 nodes, 1 batch size
=== 25 layer, 128 nodes, 1 batch size 1600 -
o add model size — slope
5 - as offset 1400 barely seeable

=
1

== 12 layer, 128 nodes, 1 batch size

1200 - —o= 25 layer, 128 nodes, 1 batch size

W
1

—

1000 -

N
|

Allocated memory [KByte]
Allocated memory [KByte]

-
1

800 -
*

o

3 4 5 0 1 3 4 5

2 2
loaded AOT models loaded AOT models

1

o

. UH
33 Comparison i
TF AOT

e tf::Graph larger than model weights e Footprint of compiled c-function solely driven by size
s About twice as large in shown tests of model weights

e tf::Session always larger than tf: :Graph e Cpp wrappers reserve buffers for input, output and all
s Model weights copied into each session intermediate layers, overhead negligible

s One wrapper needed per expected batch size

e Absolute size per session quite large
s c-function (weights) might be sharable

e Absolute sizes small compared to TF objects
(Session + Graph) vs. (Butfer + *.0) e independent of TF (save ~ several hundred MB RAM)

"
——

=0
- —
-

=== AQOT 12 layer + *.0
=== AOT 25 layer + *.0
== TF 12 layer + graph
=® = TF 25 layer + graph

Allocated memory [KByte]

—Y——————)
*

0 1 2 3 4 5
loaded models

What was done:

m First steps with a new compiler method for Tensorflow graphs were made
s CPU runtime and RAM usage of conventional method was compared

> CPU runtime is equally good

>~ RAM usage Is promising

The future of AOT in CMSSW: Roadmap

o Short term

s Understand memory measurements in event processing phase
s Repeat CPU, RAM measurements with production model

> DeepTau (combined) already AOT compiled
s Enable AOT in central CMSDIST stack (bring patch live)

o Medium Term

s Automate model compilation within scram

s Provide tools for working with compiled model

(input / output access + dynamic batching)

1' + kK CMSSW

Ahead-of-time (AOT) compilation of Tensorflow models

Thank you for your attention!

Buffer

Allocated Buffers

First 2 bits are used to define "kind", else is value

Buffer value Buffer size (B) Buffer size (kB) kind
kind = 0 —» layers, 1 —» temp (output), 262144 65536 64.0 0
: : : 262144 65536 64.0 0
2 —» entrypoint (input), 3 — stackbuffer (intern
ypoint (input) () 262144 65536 64.0 0
sum of 0 = *.o file (loaded once) 262144 65536 64.0 0
262144 65536 64.0 0
static constexpr size_t kNumBuffers = 25; 262144 65536 64.0 0
static const ::xla::cpu_function_runtime: :BufferInfox BufferInfos() { 202144 65536 64.0 0
static const ::xla::cpu_function_runtime: :BufferInfo
kBufferInfos [kNumBuffers] = { 262144 65536 64.0 0
: :xla: :cpu_function_runtime: :BufferInfo({262144ULL, ~@ULL}), 262144 65536 04 .0 0
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}), .
::x1la: :cpu_function_runtime: :BufferInfo({262144ULL, ~@ULL}), 202144 65536 64.0 0
: :xla: :cpu_function_runtime: :BufferInfo({262144ULL, ~OQULL}),
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}), Z0Zlas 63536 .0 J
::xla: :cpu_function_runtime::BufferInfo({262144ULL, ~@ULL}), 131072 32768 32.0 0
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}),
: :x1la: :cpu_function_runtime: :BufferInfo({262144ULL, ~QULL}), 32768 8192 8.0 0
::xla: :cpu_function_runtime: :BufferInfo({262144ULL, ~@ULL}), 20480 5120 5.0 0
: :x1la: :cpu_function_runtime: :BufferInfo({262144ULL, ~OQULL}), .
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}), 514 123 0.125 2
: :xla: :cpu_function_runtime::BufferInfo({131072ULL, ~@QULL}),
: :x1a: :cpu_function_runtime: :BufferInfo({32768ULL, ~@QULL}), 161 40 0.0390625 1
: :xla: :cpu_function_runtime::BufferInfo({20480ULL, ~QULL}), 33 8 0.0078125 1
: :xla: :cpu_function_runtime::BufferInfo({514ULL, QULL}),
: :xla: :cpu_function_runtime: :BufferInfo({161ULL, ~QULL}), 16 4 0.00390625 0
: :xla: :cpu_function_runtime: :BufferInfo({33ULL, ~@QULL}),
: :xla: :cpu_function_runtime::BufferInfo({16ULL, ~@QULL}), LS . DUIEC0E2E =
: :xla: :cpu_function_runtime: :BufferInfo({19ULL, ~@ULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime::BufferInfo({19ULL, ~@OULL}),
: :x1la: :cpu_function_runtime::BufferInfo({19ULL, ~QULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime: :BufferInfo({19ULL, ~@ULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime: :BufferInfo({19ULL, ~QULL}),
: :xla::cpu_function_runtime::BufferInfo({19ULL, ~@OULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime::BufferInfo({4097ULL, ~QULL}) 19 4 0.00390625 3
}; '
return kBufferInfos; 4097 1024 1.0 1

}

: UH
38 Layer weights idi

e Formula to calculate number of parameters:

25 Hidden Layer network:
= 414538 --> 1658152 Bytes

Input Layer Hidden Layer Output Layer

12 Hidden Layer network:

i = 196554 --> 786216 Bytes

Input Layer Hidden Layer Output Layer

lgProf

40 Overview: Memory measurement with lgProf & Test Setup

e Use “Ignominious profiler” (IgProf, talk) in memory-profile mode
e Encapsulate the code to be measured in a function

— Trackable by name

— Easy readout with with SQLite and Python (sqlite3)

— Separation of functions into (e.g.) graph loading, session loading, inference calls
o Workflow:

o lgProf measures malloc(), free() of heap memory

s Different memory metrics:

~ MEM TOTAL. accumulated malloc()

~ MEM LIVE: difference malloc() and free() for given interval
~ MEM LIVE PEAK: biggest single malloc()

https://igprof.org/index.html
https://archive.fosdem.org/2015/schedule/event/igprof_the_ignominous_profiler/attachments/slides/625/export/events/attachments/igprof_the_ignominous_profiler/slides/625/fosdem_2015_igprof.pdf

41 Available metrics

o lgProf measures malloc(), free() of heap memory

s Different memory metrics:

~ MEM _ TOTAL: accumulated malloc()
~ MEM LIVE: difference malloc() free() for given interval

~ MEM LIVE PEAK: biggest single malloc()
e Iypical IgProf Report:

o Counts Calls Paths
° Including
Rank | iotal to/ from Total to/rOM Total | child/ Total Symbol name
parent
0.12 | 4,329,002 4,329,002 | 56,530 56,530 1 1 | virtual thunk to PerfTesterTF::analyze(edm::Event const&, edm::EventSetup const&)
[1697] | 0.12 0 4,329,002 © 56,530 1 1 | PerfTesterTF::loadGraph()
0.12 | 4,329,002 4,329,002 | 56,530 56,530 1 1 tensorflow::loadGraphDef(MlﬁmgmmmeLmj@m,_

Number of allocations . .
Function call history

Allocated memory in bytes

42 How does profiling (IgProf) works?

Program Arguments of
to profile the program

Redirect stdout/-err to logfile

Linking Mode Destination of Profile

igprof -mp -o "profile_dir.mp" cmsRun ./cmssw_cfg.py &> "$log_dir.mp.log"

43 General information about “profiler”

e [lypical program problems: too slow, consumes too much memory, its doing both!
e Computer programs can be large and complex with multiple subprocess being invoked

s Making it hard to identify inefficient parts of the program or bugs

e Profiling gives quantified answer about:

“"How much does each function in this program consume resource X?"
e Profiler collecting data mid execution of the program

m If certain feature is not used, it will not show up in the profile

e CMS own profiler “Ignominious profiler” (IgProf) the (https://igprof.org/index.html)

44 Analyse the profile

e Process profile statistics using the “lgProf-Analyser” tool

m Possible report output: ASCIl-text and sqlite3-database

s Preferred way: sqlite3 (need command line sqlite3 app)

1gprof-analyse --sqlite -d -v -g -r "MEM_TOTAL" "profile_dir.mp"” | sqlite3 "dst_report.sql3"”

>~ Enables post-processing and plotting (pythons sqlite3)

> Enables web-navigation using “lgProf-Navigator’, need CGl-open area

e Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding

45 Visualization of metrics

LIVE
TOTAL
LIVE PEAK

(—
W
2
> 0
=0
e
>
= 5
= O
= O
Qv S
= 4 (LIVE
- S TOTAL
3 LIVE LIVE PEAK
8 3 TOTAL
O LIVE PEAK
D C
Oc,&') LIVE
1 oS
N TOTAL

TOTAL LIVE PEAK
LIVE PEAK

LIVE Legend
TOTAL . X: no change w.r.t '
: .r.t. previous step
Calls (or time ®
LIVE PEAK () Y: changed w.r.t. previous step

46 Inspect logs with the browser: 127.0.0.1:PORT

Sorted by cumulative cost

(Sort by self cost)
Rank Total % Cumulative Calls Symbol name

795 0.79 28,413,804 8,042 _PyObject MakeTpCall

796 0.78 28,397,192 222,976 std:: Rb_tree node<std::pair<std:: cxx1l::basic_string<char, std::char_traits<char>, s
797 0.78 28,354,666 23,778 ClingMemberIterInternal: :DCIter::DCIter(clang::DeclContextx, cling::Interpreterx)

798 0.78 28,052,796 302,319 PerfTesterTF::loadSessions () «e————— Create 1 or more Session

800 0.78 28,052,788 302,318 tensorflow: :createSession(tensorflow: :GraphDef constx, tensorflow::SessionOptions&)
799 0.78 28,052,788 302,318 tensorflow: :createSession(tensorflow: :GraphDef constx, int)

801 0.77 28,046,280 26,956 TClass::CallShowMembers(void constx, TMemberInspector&, bool) const'2

802 0.77 28,007,926 302,218 tensorflow: :DirectSession::Create(tensorflow: :GraphDef const&)

1698 0.12 4,329,002 56,530 tensorflow: : loadGraphDef(std:: cxx11l::basic_string<char, std::char_traits<char>, std::allc
1697 0.12 4,329,002 56,530 PerfTesterTF::loadGraph() «————— | oad 1 or more Graphs

47 Measurement of the setup phase

e For the setup phase, we are only interested

in MEM LIVE, i.e., amount of physical
memory blocked by setup functions

e We know exactly which function / interval
5 to measure (e.g. tf::loadGraph())

)

-

g e Applies to global & per-thread measurement
S
S

’ LIVE — malloc() - free()

Allocated memory |[bytes]
N

Tr
O @@O TOTAL — 3 malloc()
O
1 N LIVE PEAK — max single malloc()

k/v——J Calls

Measured interval

UH
48 Measurement of the event phase ifi

e For inference calls in event loop (analyze()), need to know maximum memory

aIIocationi within the evaluation call (e.g. tf::run(session, ...))
e Open question: which metric to use?
s LIVE: difference between "after" - "before", should be 0 in absence of leaks

= LIVE PEAK: only measures largest, single allocation

« MAX: "records the largest single allocation by any function" (link)

.

o — Not sure yet which one to use

é 6

-

© 5

=

<,

E 4

=

Q

IS

8 3

< , LIVE

TOTAL

. Allocation o

LIVE PEAK

Calls (or time)

https://igprof.org/analysis.html

. UH
49 * o file offset idi

e Pruning removed nodes that does not change the values: _ | _ _
c-function consists mainly of model weights

> Bias tensors removed (default value = 0) difference is result of pruning (bias and batchnorm)

> Batch norm Gamma and Beta removed (default = 1, 0) AOT model *.o trainable weights

N |
o (3%64+3*12%*128 + 10)*4/1024 = 18.7890625 YEE kB kB

m 04, 128 , 10 are shape of network 15 249 268
s bias, gamma and beta have same shape (thus * 3)

s 4 since 32 Bit-float weights 25 1581 1619

50 Potential advantages in CMSSW

e Current TF workflow

= [raining in python, then export to frozen graph
s Load graph in C4+4 (once per process)

s Mount graph onto session (once per stream module instance)

m Use TF C4++ API to feed, run and read

~ No simple handles for optimization

e Potential AOT benefits

m Easy to use graph and compiler optimizations

s Potentially faster (7), might depend on model

s Reduced memory footprint
> No need to load the full libtensorflow.so
> Model weights only once in memory

> Virtually no memory overhead over multiple threads

51 Requirements / implications

e For TF installation in CMSDIST

s Needs to be installed with XLA support, not done yet but mostly (but described e.g. here)

~ One incompatibility "eigen" in CMSDIST, but resolvable

e For models

a Graph to be in "saved model" format (standard), exported with target signature(s), i.e., input shapes

s Custom operations need to be compositions of TF ops; currently not supported:

> Some ops of standalone keras (use of tf.keras is anyway encouraged)

> Some TF ops with unpredictable shape (e.g. tf.where)

e For inference code in CMSSW

m For now: created *.o files must be linked manually in BuildFiles

=~ Vision: add hooks to BuildFiles and implement them to work with scram, e.g.

<aot_compile model="/data/my_model" class="MyModel" batch_sizes="1 2 4
8" />
s No more access to tensorflow: : Tensor, input / output manipulation done on bare pointers

> Simple set of tools could provide convenience

https://gist.github.com/riga/f9a18023d9f7fb647d74daa9744bb978
https://www.tensorflow.org/guide/saved_model

52 XLA

e Graphs can be pre-compiled with the saved_model_cl1i tool

my_graph.h

my_graph |
(TF saved model)
my_graph.o

e Based on domain-specific XLA (Accelerated Linear Algebra) compiler

e Pros:
s Generated files self-contained and, in particular, do not require the TensorFlow runtime
s Provide a simple function that can be simply called with network inputs

s Can greatly improve performance

e Cons:

s Compilation process challenging to automate in production

m Batch sizes are fixed and need to be known a priori, or either padded or stitched

https://www.tensorflow.org/xla

53 Potential advantages in CMSSW

e Current TF workflow

= [raining in python, then export to frozen graph
s Load graph in C4+4 (once per process)
s Mount graph onto session (once per stream module instance)

m Use TF C4++ API to feed, run and read

~ No simple handles for optimization

CM IS simulelztion | | | | | | |

—e— TF 1.6, single thread Averages over 500 inferences
--eo-- TF 1.6, 4 threads

—e— TF 2.1, single thread

--e-- TF 2.1, 4 threads

—e— TF 2.1, single thread, AOT |
--e-- [F 2.1, 4 threads, AOT
—e— ONNX, single thread

—h
o
N

e Potential AOT benefits

m Easy to use graph and compiler optimizations

s Potentially faster (7), might depend on model

s Reduced memory footprint

Deepdet runtime / batch size [ms]
S

~ No need to load the full Tibtensorflow.so

> Model weights only once in memory

> Virtually no memory overhead over multiple threads

10~ | | | | | | | | |
1 2 4 8 16 32 64 128 256

Batch size

SPONSORED BY THE

CLUSTER OF EXCELLENCE #f | feteroinsn
. aY Universitdit Hambur
s orsunG | ek e | SO QUANTUM UNIVERSE

and Research

"Ahead-of-time" compilation of Tensorflow models

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

N
4

56 Inference of neural network models in CMS

Context of this talk:
e Service work for "Machine Learning Production Group" for the CMS Experiment

e lalk focuses on improvement of computing performance of neural networks

Inference of neural network models in CMS

e Inference engine of CMS called CMSSW
e models run single threaded in CMSSW

o Why we in CMS care: limited memory resources per core (=2GB)

e Many production models already implemented

s Deeplet tagging, DeepFlavor, DeepMET (50-100 MB each) — and even more in the pipeline!

e most models run in CPU only mode

e Naive solutions

= buy more hardware %
a deploy only "important”" models %

s be more efficient

. . UH
57 Overview: Different ways to run Tensorflow (TF) models i

AXLA ="Accelerated Linear Algebra"

AOT = "Ahead of time",
compile code at build time into
system dependent binary

normal TF
usage

activated using
C- XLA Flags
shown today

CPU CPU, GPU CPU, GPU
Focus of this talk:

being more efficient with TF models using XLA and AOT on CPU (left/green path)

58 How TensorFlow in graph mode operates

e [|F generates a data flow graph representing the ML model

e Graphs consist out of kernel and edges
s Kernel represent operations (Add, MatMul, Conv2D, ...)
> TF runtime, called session, executes graph kernel

~ Operation kernels are written in C+4 for CPU or CUDA for GPU

s Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

biases MO Re.

weights

examples

labels softmax Example of a 1-layer network

e Beyond modus operandi of TensorFlow: optimizations (XLA) and independence of Tensorflow (AOT)

50 What does XLA and AOT do?

AOT

Enables several types of graph optimizations e Converts graphs into self-contained library
e On graph level: m Graph becomes a series of compute kernels
m kernel fusion in C++
s Buffer analysis for allocating runtime memory = No dependence on main
(eliminates intermediate caches) libtensorflow.so
s Common subexpression elimination e Pros:
s Pruning of unused kernel 1. Reduced memory footprint (shown later)
e On hardware level: 2. Trivial multi-threading behavior
s TPU, GPU or CPU (different backends) 3. Runtime potentially faster (shown later)
e Cons:

1. No dynamic batching (fixed memory layout)

Input (Python) Output (C++)

T my_graph.o

2. Graph needs to be XLA compatible

my_graph
——
(TF saved model,

(shown later)
default in TF2)

60 AOT Compilation workflow summary

Step 1: Prepare graph Step 2: Tensorflow Optimization Step 3: XLA Optimization

save model with fixed batch size optimization level optimization level
(static memory layout) configurable configurable

3 —

weights
matmul

examples

MetaOptimizer

EL RS softmax

Step 4: AOT compiled using TF "saved_model_cl1" tool
Input Final Output

my_graph.h

XLA_optizmized AOT
static my_graph

my_graph.o

Performance Study

62 Performance study outline

Network and payload

e Created several feed-forward toy model

12 /25 layers, 128/256 units, batch-norm and SELU activation

e CPU runtime tests performed on login-node with CMSSW:

Compared forward pass runtime of TF C vs. AOT

inputs of the network are random values

Averaged runtimes over 500 calls, after 100 "warm up" calls

Tested event forward time for different batch sizes from 20 to 210

No XLA optimizations applied

e Memory tests using MemoryProfiler:

s Measure memory consumption for setup phase

CPU runtime Study

64 CPU performance

1. Runtimes

e bigger batch sizes can be vectorised (decrease A~ AOT 12L 128N
of time per event, till reaching saturation) -4 TF 12L 128N
A —— AOT 12L 256N
e Equal performance between TF and AOT 'g' . & TF 12L 256N
s compare same color lines — -:— AOT 25L 256N
. _ -9 TF 25L 256N
dotted (TF) vs solid (AOT) S 107
>
e batch size 1 AOT is always better than TF V
| -
S
2. Multi-threading 0
e Performance test restricted to 1 thread g
e CMS production models run in single thread

20 21 22 23 24 25 26 27 28 29 210
batch size

Memory Study

66 Memory comparison AOT vs TF

memory comparison
TF graph vs AOT model

TF graph
N layers KB]
12 1997
25 3539

AOT model
*.0 [kB]

749

1531

trainable
weights
[kB]

763

1619

e [F graph more than 2x bigger than AOT
— [F graphs contain many meta information
e AOT model consist of (pruned) trainable weights

total memory consumption
AOT (batch size 1) vs. TF (loading 1 model)

AOT model

N layers
+ Wrapper
12 751
25 1533

¥ .0 TF Session 4+ Graph
k] K]
3599
136388

AOT by factor 10 smaller than TF

AOT wrapper = buffer for

input, output and

intermediate layer (scales with batch size)

wrapper size = total - model size —» small (2kB)

TF 1/0 tensors are not inc

uded in the measurement

AOT fully independent of

1bTensorflow.so

at runtime, saves several hundred MBs on top

Limits of AOT compilation

68 When does AOT compilation fail?

Possible reasons to fail AOT compilation:
1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)
2. No existing TF XLA implementation of the kernel
» more XLA kernels added with each TF update

How to check if an XLA implementation exist for a given model:
1. Create XLA operation table during TF compilation .
example: check AOT compatibility of

feed-forward network with batch-norm
3. Find match between table and graph for TF v. 1.4

2. Get all used nodes within graph

Operation lhas XLA

MatMul
Identity
Sub
BiasAdd
Mul

Softmax

NoOp
Rsqrt

Selu network is not

AddV?2 |False :
ReadVariableOp | True AOT compatible

Const | True

69 Summary and Outlook:

e Summary:

s a new method to run TF Graphs on CPU, called AOT, was presented

m first runtimes showed that AOT is on average comparable fast as TF C++ models
» batch size 1 in AOT is always faster than TF C++
» AOT open gates to more optimization with different XLA level

= AOT memory footprint is about factor 10 smaller than TF

m presented limits of AOT compilation in the context of model building and constraints on ops

e CMS Outlook:

s switch to AOT models would give room for more models in current hardware stack (save money)

s slight increase in performance expected, since production models run on single batch mode

e General Outlook:

s documentation of compiling workflow will be written
| | you don't start from 0
m tools for model preparation are in development

SPONSORED BY THE

o CLUSTER OF EXCELLENCE #f | feteroinsn
e romcnne 1o oo QUANTUM UNIVERSE

and Research

"Ahead-of-time" compilation of Tensorflow models

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

Email: bogdan.wiederspan@uni-hamburg.de

N
V N

mailto:bogdan.wiederspan@uni-hamburg.de

BackUp

Technical Details

73 Requirements / implications

e For TF installation in CMSDIST

s Needs to be installed with XLA support, not done yet but mostly (but described e.g. here)

~ One incompatibility "eigen" in CMSDIST, but resolvable

e For models

a Graph to be in "saved model" format (standard), exported with target signature(s), i.e., input shapes

s Custom operations need to be compositions of TF ops; currently not supported:

> Some ops of standalone keras (use of tf.keras is anyway encouraged)

> Some TF ops with unpredictable shape (e.g. tf.where)

e For inference code in CMSSW

m For now: created *.o files must be linked manually in BuildFiles

=~ Vision: add hooks to BuildFiles and implement them to work with scram, e.g.

<aot_compile model="/data/my_model" class="MyModel" batch_sizes="1 2 4
8" />
s No more access to tensorflow: : Tensor, input / output manipulation done on bare pointers

> Simple set of tools could provide convenience

https://gist.github.com/riga/f9a18023d9f7fb647d74daa9744bb978
https://www.tensorflow.org/guide/saved_model

74 Advantages of using Graphs

e Parallelism:
m 1dentify operations that can be executed 1n parallel
e Computation optimization:
m graphs are well-known data structure
= optimisation possible.
> ¢.g: prune unused nodes (size optimisation)
> detect redundant operations or sub-optimal graphs and replace them with the best
alternatives (speed optimisation)
e Portability:
m graphs are language- and platform-neutral
e Distributed execution:
s Every graph’s node can be placed on an independent device and on a different machine.

75 Understanding of memory for different phases

e lalk: Focus on setup phase, since we can not measure event phase yet.

e global allocate memory once, per thread for each thread

e Comparison: TF multiple sessions vs. loading multiple AOT models

Phase Description Action in TF Action in AOT
global setup Before threads (stream modules) are launched £ :1oad.Gr'ap.hC); loading complled model
(load model and weights into memory) (external c-function in *.o0 file)
setup per Footprint per thread, tf::loadSession(); C?pWr_'apzer W buffers £
thread but before events are analyzed (device placement & caching per thread) (access to ¢ l?:;tlsnout;iﬁrve S
. . . tf::run(session, ...); w.run();
vent ph ’ ’ ’
event phase Resource consumption durlng event processing (book inputs/outputs & evaluate model) (evaluate model)

setup phase event phase teardown phase

global per thread

\V
>
&
9
/)
<>

Allocated memory [a.u.]

program runtime [a.u.]

76 TensorFlow setup phase

e Launch multiple sessions with same frozen graph vold ”:";T';’Ste""i 1 fl‘ raph() { (e
graph_def = tensorflow:: loadGraphDef(graph_path);
s Load graph once (global) Y
_ _ void PerfTesterTF:: loadSessions() {
s Copy graph into session (per-thread) std: :vector< tensorflow::Session+ > loaded_sessions;
_ _ loaded_sessions.reserve(number_of loaded sessions);
e Does not include creation of tensors yet! for (int i = @3 i < number of loaded sessions: i++) {
session = tensorflow::createSession(graph_def);
loaded_sessions.push back(session);
Memory allocation of 1ToadSessions() }
35000 - .
—e— 12 layer, 128 nodes code to load graph and sessions
—e= 25 layer, 128 nodes Ii|near scaling with
— 30000 - —
L sessions as expected
g 25000 -
o
CED 20000 -
z Graph contains plenty of meta data
g P N | loadGraph() trainable weights
(0 dyers
s kB kB
O 10000 - [] []
<
c000 - 12 1997 768
[
<+——]opaded graph
N T N B arap
0 1 2 3 4 5 25 3539 / 1619
loaded tf sessions

77 AOT setup phase Uﬂ.}."

e Load multiple AOT models of same batch size

s Cpp wrapper created to call c-function (per thread) c-function consists mainly of model weights

~ Reserves buffers for inputs, outputs per model difference is result of pruning (bias and batch norm)

~ off-set = model depending (slope) AOT model *.o trainable weights

N layers KB KB]

s Reserves buffer for intermediate layers once (*.0)

e Important: each Cpp wrapper handles only one batch size 12 749 768

s c-function with model weights might be shared between
different batch sizes (check ongoing, important for stitching) 25 1561 1619

m cpp wrapper is neglectable small compared to layers

Memory allocation of Cpp wrapper total Memory allocation
! —o== 12 layer, 128 nodes, 1 batch size
=== 25 layer, 128 nodes, 1 batch size 1600 -
o add model size — slope
5 - as offset 1400 barely seeable

=
1

== 12 layer, 128 nodes, 1 batch size

1200 - —o= 25 layer, 128 nodes, 1 batch size

W
1

—

1000 -

N
|

Allocated memory [KByte]
Allocated memory [KByte]

-
1

800 -
*

o

3 4 5 0 1 3 4 5

2 2
loaded AOT models loaded AOT models

1

o

78 XLA

e Graphs can be pre-compiled with the saved_model_cl1i tool

my_graph.h

my_graph |
(TF saved model)
my_graph.o

e Based on domain-specific XLA (Accelerated Linear Algebra) compiler

e Pros:
s Generated files self-contained and, in particular, do not require the TensorFlow runtime
s Provide a simple function that can be simply called with network inputs

s Can greatly improve performance

e Cons:

s Compilation process challenging to automate in production

m Batch sizes are fixed and need to be known a priori, or either padded or stitched

https://www.tensorflow.org/xla

79 Potential advantages in CMSSW

e Current TF workflow

= [raining in python, then export to frozen graph
s Load graph in C4+4 (once per process)
s Mount graph onto session (once per stream module instance)

m Use TF C4++ API to feed, run and read

~ No simple handles for optimization

CM IS simulelztion | | | | | | |

—e— TF 1.6, single thread Averages over 500 inferences
--eo-- TF 1.6, 4 threads

—e— TF 2.1, single thread

--e-- TF 2.1, 4 threads

—e— TF 2.1, single thread, AOT |
--e-- [F 2.1, 4 threads, AOT
—e— ONNX, single thread

—h
o
N

e Potential AOT benefits

m Easy to use graph and compiler optimizations

s Potentially faster (7), might depend on model

s Reduced memory footprint

Deepdet runtime / batch size [ms]
S

~ No need to load the full Tibtensorflow.so

> Model weights only once in memory

> Virtually no memory overhead over multiple threads

10~ | | | | | | | | |
1 2 4 8 16 32 64 128 256

Batch size

80 Potential advantages in CMSSW

e Current TF workflow

= [raining in python, then export to frozen graph
s Load graph in C4+4 (once per process)
s Mount graph onto session (once per stream module instance)

m Use TF C4++ API to feed, run and read

~ No simple handles for optimization

e Potential AOT benefits

CMIS simulelwtion | | | | | | |

- —e— TF 1.6, single thread Averages over 500 inferences]

- --e-- TF 1.6, 4 threads

| —e— TF 2.1, single thread
--e-- TF 2.1, 4 threads

| —e— TF 2.1, single thread, AOT

--e-- TF 2.1, 4 threads, AOT

— —e— ONNX, single thread E

—
o
V)

m Easy to use graph and compiler optimizations
s Potentially faster (7), might depend on model
s Reduced memory footprint

~ No need to load the full Tibtensorflow.so

> Model weights only once in memory

Deepdet runtime / batch size [ms]
o

> Virtually no memory overhead over multiple threads 1k

10~ | | | | | | | | |
1 2 4 8 16 32 64 128 256

Batch size

L UH
81 TensorFlow memory allocation in setup phase idi

e Session = environment that allocates resources and execute graph — session uses meta data saved in Graph

e Launch multiple sessions with same frozen graph loaded Graph trainable weights

N layers kB KB]

s Load graph once (global)

s Copy graph into session (per-thread) 19 1997 263

e Does not include creation of tensors yet! /
25 3539 J 1619

Memory allocation of loaded Sessions

35000 -
== 12 layer, 128 nodes

=== 25 layer, 128 nodes |

inear scaling with
—

sessions as expected

W
-
-
o
o

25000 -

20000 -

15000 -

Allocated memory [kByte]

10000 -

vaded graph

loaded tf sessions

. UH
82 AOT memory allocation in the setup phase idi

e Load multiple AOT models of same batch size

s Cpp wrapper created to call c-function (per thread) c-function consists mainly of model weights

~ Reserves buffers for inputs, outputs per model difference is result of pruning (bias and batch norm)

s Reserves buffer for intermediate layers once (*.0) AOT model *.o trainable weights

N layers KB KB]

> off-set = model depending (slope)
e Important: each Cpp wrapper handles only one batch size 12 749 768

s c-function with model weights might be shared between
different batch sizes (check ongoing) 25 1581 1619

m cpp wrapper is neglectable small compared to layers

Memory allocation of Cpp wrapper total Memory allocation (weights + wrapper)
! —o== 12 layer, 128 nodes, 1 batch size
=== 25 layer, 128 nodes, 1 batch size 1600 - e s
o add model size — slope
5 - as offset 1400 barely seeable

=
1

== 12 layer, 128 nodes, 1 batch size

1200 - —o= 25 layer, 128 nodes, 1 batch size

—

W
1

1000 -

N
|

Allocated memory [KByte]
Allocated memory [KByte]

-
1

800 -
*

o

3 4 5 0 1 3 4 5

2 2
loaded AOT models loaded AOT models

1

o

83 Comparison of static memory allocation

Bare TF AOT

1. tf::Graph larger than model weights (1/2 of graph 1. Footprint of compiled c-function solely driven

are meta information) by size of model weights (small slope)
2. tf::Session always larger than tf: :Graph n C+4 wrappers reserve buffers for input, output
s Model weights are likely copied into each session and all intermediate layers, almost no overhead
3. Absolute size per session quite large 2. One wrapper needed per expected batch size

s Model weights in c-function might be sharable

3. Absolute sizes small compared to bare TF objects

|

T =" e | Also fully independent of LibTensorflow.so at
- > :
S - =" runtime, saves several hundred MBs on top
Y P
— 104 "
CZ; === AOT 12 layer + *.0
E === AQOT 25 layer + *.0
Q =e= TF 12 layer + graph
E =e= TF 25 layer + graph
[
Q
+J
©
@]
®)
< 10° 1

: : T : : Note: only need to look at 1 loaded model

W once cmssw#40161 is merged

https://github.com/cms-sw/cmssw/pull/40161

how buffer are allocated

Allocated Buffers

First 2 bits are used to encode "kind", else is value

kind = 0 —» layers, 1 —» temp (output),

2 —» entrypoint (input), 3 —» stackbuffer (intern)

sum of 0 = *.o file (loaded once)

static constexpr size_t kNumBuffers = 25;

static const

::xla::cpu_function_runtime: :BufferInfox BufferInfos() {

static const ::xla::cpu_function_runtime: :BufferInfo

- 4oR1LE) -
r:xla:
r:xla:
c:xla:
c:xla:
c:xla:
r:xla:
c:xla:
r:xla:
c:xla:
r:xla:
c:xla:
r:xla:
c:xla:
c:xla:
c:xla:
c:xla:
r:xla:
c:xla:
r:xla:
c:xla:
r:xla:
c:xla:
r:xla:
c:xla:

k

BufferInfos [kNumBuffe
:cpu_function_runtime:

:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:
:cpu_function_runtime:

r

s] = {

:BufferInfo({262144ULL, ~@ULL}),

:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({262144ULL, ~@ULL}),
:BufferInfo({131072ULL, ~@ULL}),
:BufferInfo({32768ULL, ~@QULL}),
:BufferInfo({20480ULL, ~QULL}),
:BufferInfo({514ULL, QULL}),
:BufferInfo({161ULL, ~@ULL}),
:BufferInfo({33ULL, ~@QULL}),
:BufferInfo({16ULL, ~OQULL}),
:BufferInfo({19ULL, ~@QULL}),
:BufferInfo({19ULL, ~OQULL}),
:BufferInfo({19ULL, ~@OULL}),
:BufferInfo({19ULL, ~OULL}),
:BufferInfo({19ULL, ~@QULL}),
:BufferInfo({19ULL, ~@QULL}),
:BufferInfo({4097ULL, ~QULL})

Buffer value

262144

262144
262144
262144
262144
262144
262144
262144
262144
262144
262144
131072
32763
20430
514

161
33
16
19
19
19
19
19
19

4097

Buffer size (B)

65536

65536
65536
65536
65536
65536
65536
65536
65536
65536
65536
32768
8192
5120
128

N
()

~ B BB BB PBHO

1024

Buffer size (kB)

64.0

64.0
64.0
64.0
64.0
64.0
64.0
64.0
64.0
64.0
64.0
32.0
8.0
5.0
0.125

0.0390625
0.0078125
0.00390625
0.00390625
0.00390625
0.00390625
0.00390625
0.00390625
0.00390625
1.0

kind

O

=R W W W W W WO rRr P NMNOOOOOO OO OO o o o

o
return kBufferInfos;

}

SumBuffer: 750.2 kB,
Model TypeBuffer Calculated: 767.8 kB

: UH
86 Layer weights idi

e Formula to calculate number of parameters:

25 Hidden Layer network:
= 414538 --> 1658152 Bytes

Input Layer Hidden Layer Output Layer

12 Hidden Layer network:

i = 196554 --> 786216 Bytes

Input Layer Hidden Layer Output Layer

. UH
87 *.o file offset i

e Pruning removed nodes that does not change the values: _ | _ _
c-function consists mainly of model weights

> Bias tensors removed (default value = 0) difference is result of pruning (bias and batchnorm)

> Batch norm Gamma and Beta removed (default = 1, 0) AOT model *.o trainable weights

N |
o (3%64+3*12%*128 + 10)*4/1024 = 18.7890625 YEE kB kB

m 04, 128 , 10 are shape of network 15 249 268
s bias, gamma and beta have same shape (thus * 3)

s 4 since 32 Bit-float weights 25 1581 1619

lgProf memory profiler

89 Overview: Memory measurement with IgProf & Test Setup

e Use “Ignominious profiler” (IgProf, talk) in memory-profile mode
e Encapsulate the code to be measured in a function

— Trackable by name

— Easy readout with with SQLite and Python (sqlite3)

— Separation of functions into (e.g.) graph loading, session loading, inference calls
o Workflow:

o lgProf measures malloc(), free() of heap memory

s Different memory metrics:

~ MEM TOTAL. accumulated malloc()

~ MEM LIVE: difference malloc() and free() for given interval
~ MEM LIVE PEAK: biggest single malloc()

https://igprof.org/index.html
https://archive.fosdem.org/2015/schedule/event/igprof_the_ignominous_profiler/attachments/slides/625/export/events/attachments/igprof_the_ignominous_profiler/slides/625/fosdem_2015_igprof.pdf

90 Available metrics

o lgProf measures malloc(), free() of heap memory

s Different memory metrics:

~ MEM _ TOTAL: accumulated malloc()

~ MEM LIVE: difference malloc() free() for given interval
~ MEM LIVE PEAK: biggest single malloc()
e Iypical IgProf Report:

o Counts Calls Paths
° Including
Rank | ¢t to/ from Total to/rOM Total | child/ Total Symbol name
parent
0.12 | 4,329,002 4,329,002 | 56,530 56,530 1 1 | virtual thunk to PerfTesterTF::analyze(edm::Event const&, edm::EventSetup const&)
[1697] | 0.12 0 4,329,002 © 56,530 1 1 | PerfTesterTF::loadGraph()
0.12 | 4,329,002 4,329,002 | 56,530 56,530 1 1 tensorflow::loadGraphDefLw‘xll::basic_string<char. std::char traits<char>,

Encapsulated function to measure

Number of allocations . .
Function call history

Allocated memory in bytes

91 How does profiling (IgProf) works?

Program Arguments of
to profile the program

Redirect stdout/-err to logfile

Linking Mode Destination of Profile

igprof -mp -o "profile_dir.mp" cmsRun ./cmssw_cfg.py &> "$log_dir.mp.log"

92 General information about “profiler”

e [lypical program problems: too slow, consumes too much memory, its doing both!
e Computer programs can be large and complex with multiple subprocess being invoked

s Making it hard to identify inefficient parts of the program or bugs

e Profiling gives quantified answer about:

“"How much does each function in this program consume resource X?"
e Profiler collecting data mid execution of the program

m If certain feature is not used, it will not show up in the profile

e CMS own profiler “Ignominious profiler” (IgProf) the (https://igprof.org/index.html)

93 Analyse the profile

e Process profile statistics using the “lgProf-Analyser” tool

m Possible report output: ASCIl-text and sqlite3-database

s Preferred way: sqlite3 (need command line sqlite3 app)

1gprof-analyse --sqlite -d -v -g -r "MEM_TOTAL" "profile_dir.mp"” | sqlite3 "dst_report.sql3"”

>~ Enables post-processing and plotting (pythons sqlite3)

> Enables web-navigation using “lgProf-Navigator’, need CGl-open area

e Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding

94 Visualization of metrics

LIVE
TOTAL
LIVE PEAK

(—
W
2
> 0
=0
e
>
= 5
= O
= O
Qv S
= 4 (LIVE
- S TOTAL
3 LIVE LIVE PEAK
8 3 TOTAL
O LIVE PEAK
D C
Oc,&') LIVE
1 oS
N TOTAL

TOTAL LIVE PEAK
LIVE PEAK

LIVE Legend
TOTAL . X: no change w.r.t '
: .r.t. previous step
Calls (or time ®
LIVE PEAK () Y: changed w.r.t. previous step

95 Inspect logs with the browser: 127.0.0.1:PORT

Sorted by cumulative cost

(Sort by self cost)
Rank Total % Cumulative Calls Symbol name

795 0.79 28,413,804 8,042 _PyObject MakeTpCall

796 0.78 28,397,192 222,976 std:: Rb_tree node<std::pair<std:: cxx1l::basic_string<char, std::char_traits<char>, s
797 0.78 28,354,666 23,778 ClingMemberIterInternal: :DCIter::DCIter(clang::DeclContextx, cling::Interpreterx)

798 0.78 28,052,796 302,319 PerfTesterTF::loadSessions () «e————— Create 1 or more Session

800 0.78 28,052,788 302,318 tensorflow: :createSession(tensorflow: :GraphDef constx, tensorflow::SessionOptions&)
799 0.78 28,052,788 302,318 tensorflow: :createSession(tensorflow: :GraphDef constx, int)

801 0.77 28,046,280 26,956 TClass::CallShowMembers(void constx, TMemberInspector&, bool) const'2

802 0.77 28,007,926 302,218 tensorflow: :DirectSession::Create(tensorflow: :GraphDef const&)

1698 0.12 4,329,002 56,530 tensorflow: : loadGraphDef(std:: cxx11l::basic_string<char, std::char_traits<char>, std::allc
1697 0.12 4,329,002 56,530 PerfTesterTF::loadGraph() «————— | oad 1 or more Graphs

96 Measurement of the setup phase

e For the setup phase, we are only interested

in MEM LIVE, i.e., amount of physical
memory blocked by setup functions

e We know exactly which function / interval
5 to measure (e.g. tf::loadGraph())

)

-

g e Applies to global & per-thread measurement
S
S

’ LIVE — malloc() - free()

Allocated memory |[bytes]
N

Tr
O @@O TOTAL — 3 malloc()
O
1 N LIVE PEAK — max single malloc()

k/v——J Calls

Measured interval

UH
97 Measurement of the event phase ifi

e For inference calls in event loop (analyze()), need to know maximum memory

aIIocationi within the evaluation call (e.g. tf::run(session, ...))
e Open question: which metric to use?
s LIVE: difference between "after" - "before", should be 0 in absence of leaks

= LIVE PEAK: only measures largest, single allocation

« MAX: "records the largest single allocation by any function" (link)

.

o — Not sure yet which one to use

é 6

-

© 5

=

<,

E 4

=

Q

IS

8 3

< , LIVE

TOTAL

. Allocation o

LIVE PEAK

Calls (or time)

https://igprof.org/analysis.html

98 Potential advantages in CMSSW

e Current TF workflow

= [raining in python, then export to frozen graph
s Load graph in C4+4 (once per process)

s Mount graph onto session (once per stream module instance)

m Use TF C4++ API to feed, run and read

~ No simple handles for optimization

e Potential AOT benefits

m Easy to use graph and compiler optimizations

s Potentially faster (7), might depend on model

s Reduced memory footprint
> No need to load the full libtensorflow.so
> Model weights only once in memory

> Virtually no memory overhead over multiple threads

ML Production
Inference Strategies

in CMSSW

Updates on TensorFlow AOT and XLA

in CMSSW
Inference and Batching Strategy

Marcel Rieger, Peter Schleper, Bogdan Wiederspan

Title on frontpage
UH

}t{ Universitat Hamburg 01.01.2022

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Summary from previous presentations

102 Reminder: TensorFlow in CMSSW

possible,
currently default
A 0 T q done deactivated
o EPE e dist #7648
added but still hardly (cmsdist#7648)
I documented

shown today l

CPU GPU CPU GPU

https://github.com/cms-sw/cmsdist/pull/7648
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/compiler/xla/debug_options_flags.cc

103 Reminder: What does XLA and AOT do?

AOT

Enables several types of graph optimizations e Converts graphs into self-contained library
e On graph level: s Graph becomes a series of C4++4+ compute kernels
s kernel fusion = No dependence on main libtensorflow.so

s Buffer analysis for allocating runtime memory o Pros:

(eliminates intermediate caches) 1. Reduced memory footprint
= Common subexpression elimination 2. Trivial multi-threading behavior
= Pruning of unused kernel 3. Runtime potentially faster (depends on degree
e On hardware level: of optimization)
s TPU, GPU or CPU (different backends) e Cons:

1. No dynamic batching (fixed memory layout)

but can be emulated

Input (Python) Output (C++)

T my_graph.o

(padding/stitching, shown later)

my_graph
——
(TF saved model,

default in TF2)

2. Graph needs to be XLA compatible

104 Results of previous contribution (link ©=) on memory footprint

Bare TF AOT

1. tf::Graph larger than model weights 1. Footprint of compiled c-function solely driven
s About twice as large in shown tests by size of model weights
2. tf::Session always larger than tf::Graph » C++ wrappers reserve buffers for input, output

= Model weights likely copied into each session and all intermediate layers, almost no overhead

3. Absolute size per session quite large 2. One wrapper needed per expected batch size

s Model weights in c-function might be sharable (*)

3. Absolute sizes small compared to bare TF objects

il e [Also fully independent of 11bTensorflow.so at
runtime, saves ~300 MBs on top

=== AOT 12 layer + *.0
=== AQOT 25 layer + *.0
-e= TF 12 layer + graph
=®= TF 25 layer + graph

Allocated memory [KByte]

o J ! : . : Note: only need to look at 1 loaded model

W once cmssw#40161 is merged

https://indico.cern.ch/event/1180977/#4-updates-of-ahead-of-time-com
https://github.com/cms-sw/cmssw/pull/40161

105 Results of previous contributions (link =) on model compatibility

Possible reasons to fail AOT compilation:
1. Kernel produce no predictable shapes (=no fix memory layout) at compile time (e.g tf.where)
2. No existing TF XLA implementation of the kernel
s more XLA kernel implementation added with each TF update

XLA compatibility check for a given model:

1. requires TF-to-XLA conversion table, created by:
tfZ2xla_supported_ops --device="XLA_{CPU,GPU}_JIT"
2. Find match between table and nodes in graph, using cmsml tool:

Operation lhas XLA

Identity
Sub
BiasAdd

example: check AOT compatibility of Mul

_ Softmax
feed-forward network with batch-norm NoOp

Rsqrt
for TF v. 1.4 Selu network is not

AddV2 :
ReadVariableOp AOT compatible

Const

https://indico.cern.ch/event/1219738/contributions/5154212/attachments/2555559/4403617/2022-11-28_bogdan_mlprod.pdf

106 Checklist for moving to production

Possible application workflow
(for PAGs/POGs/DPGs)

1. Read documentation on how to integrate
AOT models in CMSSW
2. Train network and store as SavedModel

m Either Keras model or tf.function

3. Integrate into CMSSW plugin
s Add configuration to BuildFile.xml, e.g.:

<aot_compile model="/data/my_model"
class="MyModel" batch_sizes="1 2 4 8"/>

m Perform inference via tfaot::Inference
helper class
m Compile

4. Measure runtimes and memory metrics

Action items
(for us)

— Add section to cms-ml.github.io/documentation

— Provide convenience function to cmsml (90% done)

— Provide AOT compatibility check to cmsml (90% done)

— Automate compilation in scram tools

— Create class wrapping bare objects created by AOT,
providing easier API, dynamic batching, ...

— Integrate AOT compilation tools into CMSDIST
(85% done, need to integrate with general TF update)

— Integrate with performance measurement tools

(project by Nathan Prouvost, status shown soon)

https://www.tensorflow.org/guide/saved_model
http://cms-ml.github.io/documentation/inference

107 More granular roadmap

e Setup
g Update performance measurement techniques (— created semi-automated tool based on IgProf)
g Move to more stable test machine (— moved setup to cmsdev test machine, less volatile)
e Updates to TF installation (high priority)
g Enable AOT in central CMSDIST stack (— done by Marcel, see update here)
IZ Find method to check XLA/AOT compatibility (presented last talk, see here)

[] Provide tools for working with compiled model (tensor access + dynamic batching if needed)
(— ongoing X)

[] Automate model compilation within scram

e Measurements

Mlook into possible batch strategies (= shown today)

T Use DeepTau as testing model

IZ AOT compile model

T Adjust inference workflow in CMSSW to use AOT (— ongoing L)
[] Repeat performance measurements

D Measure memory consumption in events processing phase

https://indico.cern.ch/event/1226617/contributions/5182200/attachments/2569682/4430805/2022-12-19_tf_status_plans.pdf

Inference & batching strategies

109 Static batching and consequences for AOT

e AOT has no support for dynamic batching

s No interest expressed by Google to add support in the near future

e Resulting challenges for AOT

s Note: most applications in CMSSW are single-batch anyway
s Model inference that uses batching (e.g. per jet / tau / ...) would require

multiple compiled models with different static batch sizes

e Each compiled AOT model consist of one header and one object file (with weights)

e Having multiple models requires loading weights (*.o file) multiple times
— Not feasible to compile every possible batch size

| Output (C++)
_——> my_graph.h

T my_graph.o

Input (Python)

my_graph
(TF saved model, —_—

default in TF2)

e Possible solution

I Emulate dynamic batching with different strategies

110 Possible AOT inference strategies

e Batching strategies to emulate dynamic batching: normal, stitching, padding

e Example: batch size 3

Normal Stitching Padding

(exact batch size) (pure additive combination) (allow marginal zero padding)

normal 3 stitching 241 padding (4 - 1)
model: aot batch 3.h model: aot batch {1,2}.h model: aot batch 4.h
input: [el, e2, e3 input: [el],[e2, e3] input: [el, e2, €3, O]
output: [f(el), f(e2), f(e3)] output: concat([f(el)], [f(e2), f(e3)]) output: slice[f(el), f(e2), f(e3), f(0)]

stitching 1+1+41
model: aot batch 1.h
input: [el], [e2], [e3]
output: concat([f(el)], [f(e2)], [f(e3)])

NB: more events require

more sophisticated combinations !

111 AOT inference strategies: padding and stitching

e batch strategy: padding e batch strategy: stitching
= runtime / batch always equals the unpadded s runtime / batch always slower than normal
model eq: (8 - {1,2,3}) = 8 s exception: single batching = {16,32} * 1

— 0's are still fully evaluated — stitching batch size 1 is preferred strategy

runtime for network with 25 layers, 128 nodes

Batch strategy Runtime [ms] / batch Mean runtime [ms] Std runtime [ms]

1 62.84 62.8 15.8
2 101.28 202.6 13.6
4 63.67 274.7 22.4
8 63.93 511.5 28.2
16 63.91 1022.5 50.3
32 64.53 2064.9 206.3
64 23.4 1817.8 79.0

112 AOT inference strategies: stitching batch size 1 models

e preferred batch strategy is a hyper-

parameter depending on models complexity

s simple models (128 nodes) runtime —— 12 256
is dominated by overhead J) —t— 25.256
= —4— 12_128
» complex models (256 nodes) or large — . 22128
(), - batch size 1
batch sizes benefit from vectorisation N
— N
e batch size 1 fast for simple models c
O
e threshold of strategy transition depends on e
the complexity of the mode e | 074 SN SR o Y O U SR IS IS RN SO
~ | —
m vertical line indicates threshold Q Wwf—\
m moves towards smaller batch size g | ’
.............................. | PTTYY CYTIYY COTITY ITTIS
with increasing model complexity g | ! 1 1 |
. ' . v 4
= independent of numbers of layers = o d
(no vectorisation benefit) 1 2 4 8 16 32 64 128 256 512 1024 2048 4096
e preferred batch strategy: batch size

s "stitching" left to the threshold
= "normal" right to the threshold I Note: most applications in CMSSW are single-batch

UH

113 Summary it

e Gained insights into possible inference & batching strategies for AOT models to emulate dynamic batching
= runtime most performant for smallest necessary batch size = not feasible to compile every batch size
e presented first measurements of padding and stitching strategy
s "padding" shows no runtime benefit compared to "normal"
s "stitching" multiple models of batch size 1 together is most performant for less complex models
s "normal" batching strategy preferred for complex models

e General: choice of batching strategy depends on models complexity

m threshold of strategy transition is a hyperparameter — needs to be measured for each model

(we discuss about using Nathans automatised "ML Prof" for this)

e Further investigation necessary:

s are models weights (*.0) shareable between model objects?

Backup

Model Building context

116 Today: Challenges during AOT compilation

Question: When does AOT compilation does (not) work?

(to gain insights to possible constraints for models to be compiled)

Compilation workflow

Step 0: Prepare graph Step 1: Optimization by Step 2: Optimization using XLA

n n . .
model saved with Grappler” (MetaOptimizer)

"tf.saved_model.save"

— y N
weights

cxampes

examples MEtCIOpt'i.m'i. ZerI

ELE S softmax

configuration through Flags during compilation

"tf.config.optimizer. (AOT XLA FLAGS,
XLA DEBUG FLAGS)

Add signatures to saved model

with static shape in "TensorSpec"
(tool is already created) set_experimental_options”

https://www.tensorflow.org/api_docs/python/tf/config/optimizer/set_experimental_options
https://www.tensorflow.org/api_docs/python/tf/config/optimizer/set_experimental_options
https://www.tensorflow.org/api_docs/python/tf/config/optimizer/set_experimental_options
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/aot/flags.cc
https://github.com/tensorflow/tensorflow/blob/v2.9.0/tensorflow/compiler/xla/debug_options_flags.cc

117 Step 1: What does Grappler do in detalil

e Get graph for specific signature (e.g. __inference_standard_lstm_17024_....)
e Optimize graph with TF's MetaOptimizer (more details)

s Read progress logs as following:
<Optimizer Method>: Graph size <AFTER> (<DIFFERENCE>), <needed_time>

2022-11-21 15:36:27.616914: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:1137] Optimization results for grappler 1item:
graph_to_optimize

model_pruner: Graph size after: 252 nodes (@), 963 edges (@), time = 5.325ms.

implementation_selector: Graph size after: 252 nodes (0), 963 edges (0), time = 4.803ms.

function_optimizer: Graph size after: 9221 nodes (8969), 17930 edges (16967), time = 356.309ms.

common_subgraph_elimination: Graph size after: 7329 nodes (-1892), 15056 edges (-2874), time = 94.834ms.

constant_folding: Graph size after: 7085 nodes (-244), 14618 edges (-438), time = 295.155ms.

shape_optimizer: shape_optimizer did nothing. time = 13.713ms.

arithmetic_optimizer: Graph size after: 7085 nodes (0), 14348 edges (-270), time = 129.22ms.

layout: Graph size after: 7085 nodes (0), 14348 edges (@), time = 170.869ms.

remapper: Graph size after: 7085 nodes (0), 14348 edges (0), time = 42.489ms.

loop_optimizer: Graph size after: 7085 nodes (0), 14323 edges (-25), time = 59.98ms.

dependency_optimizer: Graph size after: 2838 nodes (-4247), 5130 edges (-9193), time = 107.603ms.

memory_optimizer: Graph size after: 2838 nodes (@), 5130 edges (0), time = 157.728ms.

model_pruner: Invalid argument: Graph does not contain terminal node StatefulPartitionedCall_5.

implementation_selector: implementation_selector did nothing. time = 0.402ms.

function_optimizer: Graph size after: 2838 nodes (0), 5130 edges (@), time = 82.992ms.

common_subgraph_elimination: Graph size after: 2528 nodes (-310), 4342 edges (-788), time = 26.611ms.

constant_folding: Graph size after: 2411 nodes (-117), 4109 edges (-233), time = 82.159ms.

shape_optimizer: shape_optimizer did nothing. time = 5.279ms.

arithmetic_optimizer: Graph size after: 2411 nodes (0), 4109 edges (0), time = 49.24ms.

remapper: Graph size after: 2411 nodes (0), 4109 edges (@), time = 14.993ms.

dependency_optimizer: Graph size after: 2409 nodes (-2), 4105 edges (-4), time = 27.301ms.
Optimization results for grappler item: __inference_standard_lstm_17024_specialized_for_StatefulPartitionedCall_1_StatefulPartitio
nedCall_StatefulPartitionedCall_StatefulPartitionedCall_StatefulPartitionedCall_rnn_3_StatefulPartitionedCall_StatefulPartitionedC
all_at_graph_to_optimize

https://www.tensorflow.org/guide/graph_optimization

118 Step 2: Op compatibility with XLA

e 2 possible reasons why op-kernels might fail to AOT compile

s Kernel produces no predictable shapes at compile time (e.g tf.where)

s No existing XLA implementation of the kernel

e e.g. non-unrolled LSTM might not be AOT compatible (at least not in TF2.6)

ValueError: Detected unsupported operations when trying to compile graph __inference_standard_lstm_67406_specialized_for_StatefulPartitionedCal
1_1_StatefulPartitionedCall_StatefulPartitionedCall_StatefulPartitionedCall_StatefulPartitionedCall_rnn_0@_StatefulPartitionedCall_StatefulParti

tionedCall_at_graph_to_optimize_frozen_263[] on XLA_CPU_JIT: Enter (No registered 'Enter' OpKernel for XLA_CPU_JIT devices compatible with node
{{node while/enter/_2}})while/enter/_2

— Node with the name "while/enter/ 2" is not XLA CPU JIT compatible

— kernel named "Enter" hat no XLA implementation

e Goal: need a tool that takes any model and
m checks if a model is AOT / XLA compatible

s provides feedback in case it isn't (e.g. list incompatible ops and suggest known alternatives)

e Can help already during the model development phase, rather than after the fact during integration!

119 XLA compatibility checks

Two ways to check model compatibility

Brute force method
e run graph in
m [F1 by calling "tf.contrib.compiler.xla.compile(your_function)"
s TF2 by calling "tf.xla.experimental.compile(your_function)"

m [F2 by using the "tf.function(experimental_compile=True)" decorator
m AOT compiler

e write wrapper to catch the first op name that is not compatible

More sophisticated method

e [F knows which OP is registered by a flag

e TF to XLA kernel implementation is defined in tensorflow/compiler/tf2xla/kernels

e the following function is used to register an Op:
REGISTER XLA OP(NameObject('OperationName'). Typelnformation, 'OpNodeName') e.g

REGISTER _XLA OP(Name("MatMul").TypeConstraint("T", kMatmulTypes), MatMulOp);

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/tf2xla/kernels

120 Sophisticated method

General idea:

create table of all compatible ops and find matching graph nodes

1. Get the XLA op table 2. Check all nodes in a graph

e Arch. dependent, can only be created during e Input: SavedModel or Graph (*.pb)

full TF compilation in CMSDIST: e Get used operations from GraphDef

"bazel run -c opt -- tensorflow/compiler/
tfZ2xla:tfZ2xla_supported_ops

--device=XLA_(CPU or GPU)_JIT"

e Both for CPU and GPU (example), contains = "attr" attributes (e.g shape, inputs, types)
— Build match with table and provide feedback

= "name" node name (arbitrary identifier)

s "op" used operation name (unique identifier)

s Compatible ops by name (unique)

m All accepted type variations

e Tool already created

e To be integrated to cmsml once table is compiled in CMSDIST TF compilation (Marcel)

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/tf2xla/g3doc/cpu_supported_ops.md

121 Example output method

Operations used by a normal feed-forward network with batch-norm

Operartion |has XLA

Identity
Sub
BiasAdd
Mul

Softmax

NoOp

Rsqgrt

Selu the network should
AddV?2 not be AOT
ReadVariableOp compatible
Const

Working with lgProf

123 Analyse the profile

e Process profile statistics using the “lgProf-Analyser” tool

m Possible report output: ASClI-text and sqlite3-database

s Preferred way: sqlite3 (need command line sqlite3 app)

1gprof-analyse --sqlite -d -v -g -r "MEM_TOTAL" "profile_dir.mp"” | sqlite3 "dst_report.sql3"”

e Enables post-processing and plotting (pythons sqlite3)

e Enables web-navigation using “lgProf-Navigator’, need CGl-open area

e Easiest way to navigate is Docker image (docker pull igprof/igprof) with port forwarding

124 Inspect logs with the browser: 127.0.0.1:PORT

Sorted by cumulative cost

(Sort by self cost)
Rank Total % Cumulative Calls Symbol name

795 0.79 28,413,804 8,042 _PyObject MakeTpCall

796 0.78 28,397,192 222,976 std:: Rb_tree node<std::pair<std:: cxx1l::basic_string<char, std::char_traits<char>, s
797 0.78 28,354,666 23,778 ClingMemberIterInternal: :DCIter::DCIter(clang::DeclContextx, cling::Interpreterx)

798 0.78 28,052,796 302,319 PerfTesterTF::loadSessions () «e————— Create 1 or more Session

800 0.78 28,052,788 302,318 tensorflow: :createSession(tensorflow: :GraphDef constx, tensorflow::SessionOptions&)
799 0.78 28,052,788 302,318 tensorflow: :createSession(tensorflow: :GraphDef constx, int)

801 0.77 28,046,280 26,956 TClass::CallShowMembers(void constx, TMemberInspector&, bool) const'2

802 0.77 28,007,926 302,218 tensorflow: :DirectSession::Create(tensorflow: :GraphDef const&)

1698 0.12 4,329,002 56,530 tensorflow: : loadGraphDef(std:: cxx11l::basic_string<char, std::char_traits<char>, std::allc
1697 0.12 4,329,002 56,530 PerfTesterTF::loadGraph() «————— | oad 1 or more Graphs

e We inspected memory usage of Tensorflow regarding sessions and graphs

125 I|gProf memory measurement: Tensorflow event phase

e Event phase measurement not there yet

e Problem 1: C++4 TF interference has 2 ways to handle input and output tensor

1. define input 4+ output tensors in each new analyze call — allocate memory every time in event phase

2. create instance variables __, allocate memory 1x in setup phase
e Problem 2: need proper memory definition to classify event memory (maximum allocation?)

s depends on the batch size —> which batch size to look at?

)«’ \,&/ Vo ’\‘ dynamic alcator

Allocated memory [a.u.]

program runtime [a.u.]

126 Understanding of memory for different phases

e lalk: Focus on setup phase, since we can not measure event phase yet.

e global allocate memory once, per thread for each thread

e Comparison: TF multiple sessions vs. loading multiple AOT models

Phase Description Action in TF Action in AOT
global setup Before threads (stream modules) are launched £ :1oad.Gr'ap.hC); loading complled model
(load model and weights into memory) (external c-function in *.o0 file)
setup per Footprint per thread, tf::loadSession(); C?pWr_'apzer W buffers £
thread but before events are analyzed (device placement & caching per thread) (access to ¢ l?:;tlsnout;iﬁrve S
. . . tf::run(session, ...); w.run();
vent ph ’ ’ ’
event phase Resource consumption durlng event processing (book inputs/outputs & evaluate model) (evaluate model)

setup phase event phase teardown phase

global per thread

\V
>
&
9
/)
<>

Allocated memory [a.u.]

program runtime [a.u.]

First performance stud

128 Study outline

e Software stack

s slc/_amdo4_gccl® with CMSSW_12_4_0
s Using custom CMSDIST stack with TF XLA enabled and patched "eigen" library

e Network and payload

m (Created several feed-forward toy models

>~ Up to 25 layers with 256 units, SELU activation

s CPU runtime tests performed on login-node:

~ Compared forward pass runtime of TF and AOT in CMSSW

>~ Averaged runtimes over 500 calls, after ~100 "warm up" calls (measured with plain std: :chrono)
~ Tested event forward time for different batch sizes from 20 to 210 (saturation)

=~ No XLA optimizations applied so far

= Memory tests using IgProf:
>~ Measure memory consumption for setup phase in multithreading scenario

>~ Compare TF multiple sessions vs. multiple AOT models

129 CPU performance

1. Runtimes

s Equal performance!

(comparison same color plots) A AOT 12L 128N
s AOT without XLA optimizations —:— AGT 121 256N
_ Te, -4 TF 12L 256N
~ see bare minimum g ‘:‘ AOT - 250N
2. Multi-threading "q&’) 10-1
m CMSSW restrict program to 1 thread >
s Weights and series of compute kernels exist g
once in memory (extern "C") GE-’
m accessible by TF through lightweight +
wrapper
> can be loaded into multiple threads 1o T 2 s o a5 = o ok
> negligible multi-threading overhead batch size

(see next slides)

130 TensorFlow setup phase

e Launch multiple sessions with same frozen graph vold ”:";T';’Ste""i 1 fl‘ raph() { (e
graph_def = tensorflow:: loadGraphDef(graph_path);
s Load graph once (global) Y
_ _ void PerfTesterTF:: loadSessions() {
s Copy graph into session (per-thread) std: :vector< tensorflow::Session+ > loaded_sessions;
_ _ loaded_sessions.reserve(number_of loaded sessions);
e Does not include creation of tensors yet! for (int i = @3 i < number of loaded sessions: i++) {
session = tensorflow::createSession(graph_def);
loaded_sessions.push back(session);
Memory allocation of 1ToadSessions() }
35000 - .
—e— 12 layer, 128 nodes code to load graph and sessions
—e= 25 layer, 128 nodes Ii|near scaling with
— 30000 - —
L sessions as expected
g 25000 -
o
CED 20000 -
z Graph contains plenty of meta data
g P N | loadGraph() trainable weights
(0 dyers
s kB kB
O 10000 - [] []
<
c000 - 12 1997 768
[
<+——]opaded graph
N T N B arap
0 1 2 3 4 5 25 3539 / 1619
loaded tf sessions

131 AOT setup phase Uﬂ,},‘.

e Load multiple AOT models of same batch size

s Cpp wrapper created to call c-function (per thread) c-function consists mainly of model weights

~ Reserves buffers for inputs, outputs per model difference is result of pruning (bias and batch norm)

~ off-set = model depending (slope) AOT model *.o trainable weights

N layers KB KB]

s Reserves buffer for intermediate layers once (*.0)

e Important: each Cpp wrapper handles only one batch size 12 749 768

s c-function with model weights might be shared between
different batch sizes (check ongoing, important for stitching) 25 1561 1619

m cpp wrapper is neglect able small compared to layers

Memory allocation of Cpp wrapper total Memory allocation
! —o== 12 layer, 128 nodes, 1 batch size
=== 25 layer, 128 nodes, 1 batch size 1600 -
o add model size — slope
5 - as offset 1400 barely seeable

=
1

== 12 layer, 128 nodes, 1 batch size

1200 - —o= 25 layer, 128 nodes, 1 batch size

W
1

—

1000 -

N
|

Allocated memory [KByte]
Allocated memory [KByte]

-
1

800 -
*

o

3 4 5 0 1 3 4 5

2 2
loaded AOT models loaded AOT models

1

o

TF and XLA insights

133 How TensorFlow operates

e TF generates a data flow graph representing the ML algorithm (model)

e Graphs consist out of nodes/kernel and edges
s Nodes represent operations (Add, MatMul, Conv2D, ...)
> TF runtime execute graph nodes
> Operation kernels are written in C4++ for CPU or GPU (e.g. with Cuda)
~ Execution runtime depends on the number of calls and complexity of the kernel

s Edges represent data flowing (Tensors, control dependencies, resource handles, ...)

biases —%—x
(add >—-< RelU
weights
BN Example of a 1-layer network
C matmul CsoﬂmaXD Nodes are math operations and placeholder variables,
- / connecting lines are edges
examples
labels /

e This how tensorflow currently operates! The new part is: optimizations (XLA) and independence (AOT)

134 Node Fusion example

reduction of Ops overhead from 3 to 2

1 read of input in A
1 write of A to memory
2 reads of output A from memory

2 reads of input to A' and A"

A' = A->B
A" = A->C

A is cloned and fused with B and C
Rules when to fuse:

e no increase in byte transfer

e producer ops is fused with " all " consumers

m if one op is not fuseable, no fusion happens

135 What is a SavedModel?

e SavedModel is the prefered way to save Models in TF2.X
e A SavedModel is a directory containing
m trained parameters (weights, and variables
s [he MetaGraphDef container, which contains:
- the GraphDef (*.pb file) —— does not require the original model code to run
» low-level definition of the graph (including list of nodes, input and output connections)
- the SaverDef —— A class to save and restore variables from checkpoints

s multiple signatures — can contain multiple variants of the model (multiple vl.MetaGraphDefs,

identified with the --tag set flag to saved model cli).

136 Files used by Grappler

tensorflow/compiler/jit/build xla ops pass.cc
tensorflow/compiler/jit/compilability check util.cc
tensorflow/compiler/jit/deadness analysis.cc
tensorflow/compiler/jit/encapsulate subgraphs pass.cc
tensorflow/compiler/jit/encapsulate xla computations pass.cc
tensorflow/compiler/jit/introduce floating point jitter pass.cc
tensorflow/compiler/jit/mark for compilation pass.cc
tensorflow/compiler/jit/resource operation safety analysis.cc
tensorflow/compiler/jit/xla activity logging listener.cc
tensorflow/compiler/jit/xla cluster util.cc

tensorflow/compiler/jit/xla cpu device.cc
tensorflow/compiler/jit/xla gpu device.cctensorflow/compiler/tf2xla/const analysis.cc
tensorflow/compiler/tf2xla/xla op registry.cctensorflow/compiler/xla/parse flags from env.cctensorflow/
compiler/mlir/mlir graph optimization pass.cc

137 Files used additionally by XLA

xla/service/all gather combiner.cc

xla/service/all reduce combiner.cc xla/service/gpu/
xla/service/batchnorm expander.cc reduction dimension grouper.cc
xla/service/bfloatl6 normalization.cc xla/service/gpu/ |

. — . reduction layout normalizer.cc
xla/service/buffer assignment.cc = - . .

_ — xla/service/gpu/reduction splitter.cc
xla/service/call_graph.cc xla/service/gpu/stream assignment.cc
xla/service/call inliner.cc xla/service/gpu/tree reduction rewriter.cc
xla/service/conditional canonicalizer.cc xla/service/heap_simulator.cc
xla/service/conditional simplifier.cc xla/service/hlo_alias_analysis.cc ’ -

Lo/ o _ T P y xla/service/hlo computation.cc jit/clone constants for better clustering.cc
Xla/servlice COpY ilnsertion.cc la/service/hlo computation.h .- o o o o
xla/ service/dfs_ﬁlo_visitor .CC ila/serzj'_-ce/hlo:conisjzantifolding.cc Jlt/kernels/xla_ops.cc
xla/service/dfs hlo visitor with default.h PO Loas jit/xla_compilation cache.cc

. Xla/service O _aata Ow_analysis.ccC .e . .
xla/service/dot merger.cc xla/service/hlo dee.co jit/xla_launch util.cctf2xla/graph compiler.cc
Xiaﬁserv}ce;gump .ccC N | - xla;servicejhlo_evaluator-CC tf2xla/kernels/reduction ops common.cc
xla/service/dynamic dimension inference.cc xla/service/hlo graph dumper.cc — =
xla/service/dynamic dimension simplifier.cc xla/service/hlo_instruction.cc tf2xla/kernels/reshape _op.cc
xla/service/dynamic padder.cc xla/service/hlo_instructions.ce tf2xla/xla__compilation _device.cc

_ — xla/service/hlo instructions.h _

Xla/ Seerce/exeCUtable . CC Xla/service/hlo_memory_scheduler .CC tf2X|a/X|a_C0m pllerCC
XlajserVJ.cejflatten_call_graph - CC Xi:j:i"lz:ﬁg—mﬁiizz tf2xla/xla context.ccmlir/mlir graph optimization pass.cc
xla/service/generic transfer manager.cc X vi _P . : — : — - -
xla/service/gpu/bufger compa?atorgcc xla/service/hlo_pass_fix.h mlir /tensorflow/translate/import model.cc

_ — : . xla/service/hlo pass pipeline.cc - - -
xla/service/gpu/cudnn fused conv rewriter.cc xla/service/hlo phi graph.cc mlir/tensorflow/utils/bridge logger.cc
xla/service/gpu/fusion merger.cc xla/service/hlo_proto_util.cc mlir/tensorflow /utils/dump mlir util.cc

: : : xla/service/hlo schedule.cc : R : :
xla/service/gpu/gemm_algorithm picker.cc . T 1 mlir/xla/transforms/xla legalize tf.ccxla/literal comparison.cc

. xla/service/hlo verifier.cc _ — _
xla/service/gpu/gemm thunk.cc T . .

_ — . xla/service/instruction fusion.cc xIa/parse ﬂags from env.cc
xla/service/gpu/gpu_compiler.cc xla/service/layout assignment.cc - - —
xla/service/gpu/gpu conv _algorithm picker.cc xla/service/llvm ir/fused ir emitter.cc
xla/service/gpu/gpu conv rewriter.cc xla/service/local_service.cc
xla/service/gpu/gpu conv runner.cc xla/service/platform util.cc

. gpu/gpu_ — : xla/service/reduce scatter combiner.cc
xla/service/gpu/gpu_executable.cc xla/service/reshape mover.cc
xla/service/gpu/hlo to ir bindings.cc xla/service/service.cc
xla/service/gpu/horizontal input fusion.cc xla/service/shape_inference.cc

: : — = : xla/service/slow operation alarm.cc
xla/service/gpu/horizontal loop fusion.cc . — T

_ . . — — xla/service/sort simplifier.cc
xla/service/gpu/ir emitter unnested.cc xla/service/stream pool.cc
xla/service/gpu/kernel thunk.cc xla/service/tuple points to analysis.cc
xla/service/gpu/launch dimensions.cc xla/service/while loop constant sinking.cc

. — : la/service/while loop simplifier.cc
xla/service/gpu/llvm gpu backend/gpu backend lib.cc z;a/ﬂwgécmw'l —+OCP_s1ipLLtd
xla/service/gpu/multi output fusion.cc xla/shape util.cc
xla/service/gpu/nvptx compiler.cc xla/util.cc

xla/service/gpu/nvptx helper.cc
xla/service/gpu/parallel loop emitter.cc

138 Layer weights

Formula to calculate number of parameters:

25 Hidden Layer network:

Input Layer Hidden Layer

12 Hidden Layer network:

Input Layer Hidden Layer

414538 / 196554 = 2,109

Output Layer

Output Layer

414538 --> 1658152 Bytes

196554 --> 786216 Bytes

139 Allocated Buffers

First 2 bits are used to define "kind", else is value

Buffer value Buffer size (B) Buffer size (kB) kind
e kind = 0 —» layers, 1 —» temp (output), 262144 65536 64.0 0
: : : 262144 65536 64.0 0
2 —» entrypoint (input), 3 — stackbuffer (intern
ypoint (input) () 262144 65536 64.0 0
sum of 0 = *.o file (loaded once) 262144 65536 64.0 0
262144 65536 64.0 0
static constexpr size_t kNumBuffers = 25; 262144 65536 64.0 0
static const ::xla::cpu_function_runtime: :BufferInfox BufferInfos() { 202144 65536 64.0 0
static const ::xla::cpu_function_runtime: :BufferInfo
kBufferInfos [kNumBuffers] = { 262144 65536 64.0 0
: :xla: :cpu_function_runtime: :BufferInfo({262144ULL, ~@ULL}), 262144 65536 04 .0 0
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}), .
::x1la: :cpu_function_runtime: :BufferInfo({262144ULL, ~@ULL}), 202144 65536 64.0 0
: :xla: :cpu_function_runtime: :BufferInfo({262144ULL, ~OQULL}),
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}), Z0Zlas 63536 .0 J
::xla: :cpu_function_runtime::BufferInfo({262144ULL, ~@ULL}), 131072 32768 32.0 0
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}),
: :x1la: :cpu_function_runtime: :BufferInfo({262144ULL, ~QULL}), 32768 8192 8.0 0
::xla: :cpu_function_runtime: :BufferInfo({262144ULL, ~@ULL}), 20480 5120 5.0 0
: :x1la: :cpu_function_runtime: :BufferInfo({262144ULL, ~OQULL}), .
: :xla: :cpu_function_runtime::BufferInfo({262144ULL, ~OQULL}), 514 123 0.125 2
: :xla: :cpu_function_runtime::BufferInfo({131072ULL, ~@QULL}),
: :x1a: :cpu_function_runtime: :BufferInfo({32768ULL, ~@QULL}), 161 40 0.0390625 1
: :xla: :cpu_function_runtime::BufferInfo({20480ULL, ~QULL}), 33 8 0.0078125 1
: :xla: :cpu_function_runtime::BufferInfo({514ULL, QULL}),
: :xla: :cpu_function_runtime: :BufferInfo({161ULL, ~QULL}), 16 4 0.00390625 0
: :xla: :cpu_function_runtime: :BufferInfo({33ULL, ~@QULL}),
: :xla: :cpu_function_runtime::BufferInfo({16ULL, ~@QULL}), LS . DUIEC0E2E =
: :xla: :cpu_function_runtime: :BufferInfo({19ULL, ~@ULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime::BufferInfo({19ULL, ~@OULL}),
: :x1la: :cpu_function_runtime::BufferInfo({19ULL, ~QULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime: :BufferInfo({19ULL, ~@ULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime: :BufferInfo({19ULL, ~QULL}),
: :xla::cpu_function_runtime::BufferInfo({19ULL, ~@OULL}), 19 4 0.00390625 3
: :xla: :cpu_function_runtime::BufferInfo({4097ULL, ~QULL}) 19 4 0.00390625 3
}; '
return kBufferInfos; 4097 1024 1.0 1

}

