

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Bundesministerium für Bildung und Forschung

Real-time ML event classification with FPGAs at the LHC

Finn Labe on behalf of the UHH ML@L1 team

Deep Learning Roundtable at DESY | 08.12.2023

Why do we need ML in the trigger?

 Trigger performance decides what data is available for offline analysis!

- Sensitivity limited by trigger thresholds
 - Example: HH → bbWW (single lepton)
 - Possible solution: ML@L1

 Trigger performance decides what data is available for offline analysis!

- Sensitivity limited by trigger thresholds
 - Example: HH → bbWW (single lepton)
 - Possible solution: ML@L1

08.12.23

 Trigger performance decides what data is available for offline analysis!

- Sensitivity limited by trigger thresholds
 - Example: HH → bbWW (single lepton)
 - Possible solution: ML@L1

CMS Run 2/3 L1 trigger system

Total L1 rate 100 kHz (Run 2/3) 750 kHz (HL-LHC)

Event classification in the L1 trigger

Event classification in global trigger

Uses objects defined further

Binary network, cut on output

upstream in L1 trigger system

node defines L1 trigger condition

Event classification in the L1 trigger

- Event classification in global trigger
 - Uses objects defined further upstream in L1 trigger system

 Binary network, cut on output node defines L1 trigger condition

L1 trigger built from Field-Programmable Gate Arrays

ML on FPGAs

750 kHz (HL-LHC)

-

7

Supervised training: simple NN

Trigger NN development

- Discriminating signal from MinBias*
- Using p_T , η , φ of L1 objects

- Comparing to cut-based triggers:
 - NN outperforms at any given rate

ML@L1 is promising!

optimizatior

8

Neural Network on FPGA

Conversion for FPGA using hls 4 ml library

- Compressing network to fit FPGA
 - Single (hidden) layer network
 - Pruning: removing connections
 - Bit precision: less bits per weight
- **75 ns** latency (target < 100 ns)
- 2% of an FPGAs resources (6 available)

00:00 01:00 02:00

Integration tests

Testing NN trigger in CMS operation*

Probe stability over wide threshold range

*in so-called test crate \rightarrow no detector readout

23:00

07-Jun

Rate [Hz]

10⁶

CMS *Private Work*

Ы

0.467 fb⁻¹, 2023 (13 TeV)

Data

100

06:00

Time

03:00 04:00 05:00

H_T > 320 GeV L1 topo score > 25

0.7

45

50

55

Integration tests

Testing NN trigger in CMS operation*

PU dependency comparable

to traditional cut-based triggers

Probe stability over wide threshold range

*in so-called test crate \rightarrow no detector readout

CMS *Private Work*

MET > 90 GeV

<PU>

Data

60

Integration tests

Probe stability over wide threshold range

 PU dependency comparable to traditional cut-based triggers

Integration results very important to us: this kind of trigger is feasible!

Increasing analysis sensitivity

- Studying expected sensitivity gain from NN-based L1 algorithms
 - Simulation-based integration in run 2 HH → **bbWW** analysis
- L1 NN targeting 10 kHz L1 rate
 - Resulting pure rate much lower

Increasing analysis sensitivity

- Studying expected sensitivity gain from NN-based L1 algorithms
 - Simulation-based integration in run 2 HH \rightarrow bbWW analysis
- L1 NN targeting 10 kHz L1 rate
 - Resulting pure rate much lower

- How to handle HLT strategy?
 - Use cut-based trigger
 - Train another neural network

Events [a.u.]

Increasing analysis sensitivity

- Studying expected sensitivity gain from NN-based L1 algorithms
 - Simulation-based integration in run 2 HH \rightarrow bbWW analysis
- L1 NN targeting 10 kHz L1 rate
 - Resulting pure rate much lower

- How to handle HLT strategy?
 - Use cut-based trigger
 - Train another neural network

Summary & outlook

- Supervised ML@L1 promising for otherwise trigger-limited signals
- Integration of NNs in the CMS level 1 trigger demonstrated!
- Interesting open questions
 - Can we generalize supervised ML in the trigger system?
 - Efficiency measurement

Another approach is anomaly detection in the L1T: UHH with <u>AXOL1TL</u> and <u>CICADA</u>

- Project lead Artur Lobanov (= AL, postdoc)
 - PIs Johannes Haller, Gregor Kasieczka (Profs)
- Higgs Expert Matthias Schroeder (Staff)
- Supervised ML triggers Finn Labe (PhD), Shahin Sepanlou (MSc), Ihor Komarov (MSc), Salome Fresenbet (BSc), Karla Kleinbölting (BSc, MSc), AL
- Anomaly detection at L1 Sven Bollweg (PhD), Lars Emmerich (BSc), Susan Sefidrawan (BSc), Karim El Morabit (postdoc), AL
 - ML jet identification Philipp Rincke (MSc), Karim El Morabit (postdoc), AL
 - L1T Menu Run3: Sven Bollweg (PhD), AL Phase2: Daniel Hundhausen (PhD), Matteo Bonnanomi (postdoc), AL
 - L1 Run3 DQM Mathis Frahm (PhD), AL

Backup

L1 neural network details

Binary fully connected network

ReLu activation, BCE loss

- 26 input variables
 - MET, MET φ
 - 4 jets: p_T, η, φ
 - 2 muons: *p_T*, *η*, *φ*
 - 2 "egammas": *p_T*, η, φ

Electrons and photons indistinguishable without tracker

- **Compression details**
- Lowering **bit precision** to (6,1) for inputs & weights
 - Compression performed using **qkeras** package

The following offline cuts were used to study the trigger:

- Exactly one muon with CutBasedIdTight, PFIsoTight and $|\eta| < 2.4$
- At least three AK4 jets fulfilling tight PuPPi criteria
- At least one of them fulfilling loose DeepJet b-tagging criteria
- Distance between lepton and jets $\Delta R > 0.2$
- Transverse mass $M_T(\ell + E_T^{\text{miss}} + b_{\text{lep}}) > 60 \text{ GeV}$

In the offline analysis, an event classification DNN is next.

- Training & evaluating using Run 3 "ZeroBias" sample
 - Signal efficiency at 5 kHz of rate is below 500 Hz pure rate

