BEST CODING
PRACTICES

Bohdan Dudar
FH Sustainable Computing Workshop | Jan 18, 2024

MENU FOR TODAY

e CPU and memory basics for performance

e Sustainability aspects (including human resources)
e Avoiding common performance pitfalls in C++

e Some exercises (and food for thought)

WHAT NOT T0 EXPECT

Introduction to c++ / python from scratch

= See the HSF Training Courses for that

GPU / heterogeneous resources

In depth discussion of leveraging CPU features
Profiling

“Proper” benchmarking

https://hepsoftwarefoundation.org/training/center.html

A MODERN CPU IS A COMPLICATED BEAST

Memory Management
Unit (MMU)

Control |_| CPU
Unit Clock

L2 and L3
Cache L1d Cache

L1i Cache

ister |[B Register]

Arithmetic and
Logic Unit
(ALU)

Instruction
Pointer

Instruction
Register

FEATURES OF MODERN CPUS

e Multithreading

e Hyperthreading

e Caching on multiple levels

e Instruction pipelining

e Speculative execution / branch prediction
e \ectorization

MEMORY IS KING

Hardware Evolution and Heterogeneity

ceRN
School o/ Computing

[64 B/1c, 4 c latency |

Approximate memory
Latencies on Intel
Haswell CPUs

64 B/1c, 12 c latency |

64 B/1c for all cores
~36 c latency

L1l L1D
(32 KB) (32 KB)
L2
(256 KB)
Shared L3
(8192 KB)

c =cycle

40

Andrzej Nowak

~24 B/c for all cores
200-450 c latency

Adapted from S. Jarp

PRACTICAL ADVICE

Make data contiguous and cache friendly

= Avoid pointers & virtual functions where possible
Make data requests cache-friendly and predictable
Design with data flow in mind

= “Natural” in many cases in HEP

Write simple code

= Easier to maintain and understand

= Compiler might have an easier job optimizing it

WHAT DOES LACHE FRIENDLYEVEN MEAN?

e Datathatis accessed together is close by in memory
= CPU can “guess” which data are needed next
= (Pre)fetches them into caches to make them
quickly available

CONSIDERATIONS FOR SOFTWARE DESIGN

e Necessary efforts depend on several factors
e (Expected) lifetime of the code you are writing?
e (Potential) users other than you?
= Keep in mind future you!
e Software changes constantly
= Divide into independent pieces when possible
= No “spooky action at a distance”
e Take time to refactor if new requirements come up
e (Automated) testing is part of the process
e Documentation is part of the process

BUILDING BLOCKS FOR SOFTWARE DESIGN

e Functions
= Avoid code repetition
= Reduce variable scope / improve readability
= |solation of dependencies
e class/struct
= Group data together
= Ensure preservation of invariants
e Naming
= Good naming reduces need for comments

GENERAL CONSIDERATIONS

No mutable global state!

Immutable global variables / configuration OK

= Keep as small as possible

Avoid manual memory management

= std::unique ptrisathing

Use containers over C-style arrays

m std: :vectorisalmost always the right choice
= Store values not pointers

Functions, functions, functions, ...

CONSIDERATIONS FOR FUNCTIONS

e Split large functions into smaller ones
e Write “pure” functions
= Easier to test
= No side-effects to keep in mind
= Pass arguments by const& by default
e Keep number of arguments low
= Group input arguments into classes if necessary
e Try to avoid in-out parameters
= Return multiple values
= Groupreturnvalueintoaclass

SPLIT LARGE FUNCTIONS INTO SMALLER ONES

def complicated function (args):

e Common pattern
e Halfway there to functions
= Even naming is solved already

SPLIT LARGE FUNCTIONS INTO SMALLER ONES

def complicated function (args):
data = read data(args)

filtered data = filter data(data)

result 1 = get result 1(filtered data)

indep res = get independent result(filtered data)

e Common pattern
e Halfway there to functions

= Even naming is solved already (to a certain point)
e There are even tools to help with this!

PASSING FUNCTION ARGUMENTS IN C++

volid process 1 (vector<Data> inputs);

vold process 2 (vector<Data>& inputs) ;

volid process 2 (const vector<Data>& inputs);

AVOID IN-OUT PARAMETERS

bool process (vector<Data> consté& inputs,

vector<Data>& output,
double& efficiency);

vector<Data> output{};
double procEff;

1if (process (inputs, output, procEff)) {

}

e Complicates const-correctness
e “Noisy”

AVOID IN-OUT PARAMETERS

std: :tuple<bool, vector<Data>, double>
process (vector<Data> consté& 1nputs);

const auto& [success, output, procEff] = process (inputs);

1f (success) {

}

e Use structured bindings

e Introduce asimple struct or class if applicable
e Considerstd::optional

CONST CORRECTNESS IN C-++

e C++hasthe const keyword

= Mark variables, function parameters and member
functions as immutable

e Allows compiler to more aggressively optimize

e Communicates intent to users / developers

e Since C++11 a const member function is assumed
to be thread-safe!

e Unfortunately not the defaultin C++

BASICS OF TESTING

e Different levels of tests
e Small (pure) functions make writing unit tests easier
e Write tests in parallel to other code
e Also check “unhappy” paths
e Every language has (unit) testing frameworks
e Make tests quick to run
e Runthem as part of the development cycle
= A bug that is caught by a test doesn’t need
debugging!
e Automate running tests (Cl)

FINAL THOUGHTS (1/2)

e Use an editor that works with you not against you
= Syntax highlighting, autocomplete, code browsing,
documentation, ...
= VS Code is a good starting point
e ChatGPT (and friends) are great but not always right
= Treat them as “better autocomplete” and check
what they produce!

FINAL THOUGHTS (2 / 2)

e Error messages can be useful if read completely
e Enable compiler warnings and treat them as errors
by default
= -Werror for enforcement by the compiler
e Jupyter notebooks are great for prototyping
= Not so much for storing (and versioning!) your
code

RESOURCES & USEFUL LINKS

e HSF Training website - material for various languages
and tools

e cppreference.com - reference page for c++ & STL

e godbolt.org - “compiler explorer”, online c++ compiler

e isocpp.github.io/CppCoreGuidelines/CppCoreGuidelit

https://hepsoftwarefoundation.org/training/center.html
https://en.cppreference.com/w/
https://godbolt.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

EXERCISES

gitlab.desy.de/fh-sustainability-forum/sustainable-
coding-tutorial/software-exercise

Pick and choose

Solutions / inspiration included

ct++ exercises

= EFasy performance gains / pitfalls, writing const
correct code

= Refactoring an existing analysis

python exercises

= Unit testing and fixing an existing function

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/

