GIT Tutorial For Beginners
Link

Juliette Alimena, based on the tutorial by Tadej Novak
FH Sustainable Computing Workshop
January 18, 2024

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/tree/main/exercises

Version-Controlled Documentation

Why use version-controlled documentation, like GIT?
What is version control?

« Keep history of the code
e Can revert if something goes wrong!
e Collaborate easily with other people
« Automatically build or deploy with every change (see CI tutorial!)

GIT is Distributed

“Distributed”: Each developer has (at
least) one copy of the repository: the local
repository

Each developer interacts with one or
multiple remote repository: remotes

Online access needed only to share your
work with others and obtain the changes
introduced by others

REMOTE REPOSITORY

ormon () CIAEED

am
- '
e’

WORKING LOCAL
COPY REPOSITORY

REVERT LOG STATUS

BRANCH MERGE BLAME

COMMIT

GIT Basics

Initialise a git repository: git init
Clone a copy of a remote repo: git clone <url> <local-folder> Exercise 1

main or master is the main branch of your repository
Make your changes available (steps to push to a remote):

« git add <filename> (add a file with all changes)
o Another option: git add -p (cycle through changes and add one by one)

e Never use: git add *
« git commit -m "My commit message”
 git push <remote> <branch>
Display which remote repositories are known: git remote

Display the current status of your working copy (and its relationship with remotes): git
status
Check the history: git log

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/01-cloning-forking.md

Organizing Your Work

Several options available to collaborate with others:
« Everyone pushes to the remote repository, OR
« Everyone make a fork of the repository Exercise 1

e Each person pushes to their fork

« When ready, submit a pull/merge request to the main
repository

e Can set the main repository as an “upstream” remote
repository

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/01-cloning-forking.md

Organizing Your Work: One Repo

One possible way to organize your ! A
work: everyone pushes to one repo Q ° ",Wkd'/
main or master is the main branch ° .)
of your repository o
Work on larger chunks in dedicated o
branches g : S

g1t checkout <branch> : @ w0
Create tags to specify a state of S S TS e

your repository

. . 0 -
+ git tag <tag version> % Exercise 2

feature
master pranches

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/02-branching.md

Organizing Your Work: Forks and Merge/Pull Requests

Read Access

« Another way to organize your work,
particularly if you are collaborating with
several other people, is to use forks and
merge/pull requests

« Fork: your own online copy of the
repository

« After you fork the original repository,
you can clone your fork locally

e You can push changes to your fork
without affecting the original repository

« When you are ready, you can submit a
merge/pull request to merge your changes
from your fork back into the original
repository

Pull new changes

Central Repo
Create pull request

Your Fork Write Access

Push new commits

Local copy

e Can add the original repo as an
upstream remote repo

« And get back the changes that occur
in the upstream repository into your
fork with merge or rebase

Merge vs Rebase

-0—O0—0O >
(N

changes to main branch will prevent fast forward merge

Exercise 3

choose true merge (no rebasing required)

after true merge (no fast forwarding)

Dealing with conflicts:

e Merge: you edit someone else’s code

e Rebase: you edit your own code

"= choose rebase + fast forward merge

N\

rebase branch to prepare for fast forward merge

/.me:jy for merge with fast forward
0—0

o\ >

after merge with fast forward

O0-O00—"—0—"—0—"0@—

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/03-merge-rebase.md

Merge and Rebase Commands

Merge

« Always go to the branch you want to merge your changes to: git
checkout master

« Merge the changes: git merge super-new-feature
Rebase

« Go to the branch you are working on: git checkout super—new-
feature

« Rebase onto a branch (e.g. master): git rebase master

« Merge like usual

Providers

Basically, you have GitLab and GitHub as online providers
DESY provides an instance of GitLab: https://gitlab.desy.de

« We will be using this today: 3 Git Exercises on DESY GitlLab
CERN also has an instance of GitLab

GitHub is one of the other popular hosting providers

https://gitlab.desy.de
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises
http://www.apple.com

Some Technicalities

The local repo is located under a folder named . g1t in your working copy
Git uses 160-bit (SHA-1) hashes to point to a given state of your repository
This hash is always unique (collision unlikely)
It is hard to memorize and not very practical — we use references:

« HEAD is a reference to the hash describing the current status

e main or master is a branch (usually the main branch)

e release/21.0.21 is a tag

A given hash points to the same content, even if from different repositories,
branches, tags, ...

For small repositories, 7 leading digits of the hash are (usually) enough

For example, to show the contents of one commit: g1t show e€3153d7/

More Useful GIT Commands (~advanced)

 Stash:
o Temporarily save and remove your local changes
* Addtostash: g1t stash save <name>
e List stashed: g1t stash list
« Retrieve from stash
* but do notremoveit: g1t apply <name>

* and remove it: g1t pop <name>
e <name> is always optional
o Cherry-pick:

« Take one hash and apply it to your current staging area:

git cherry—-pick e3153d7/

What If?

I’ve made a lot of changes but now | want to submit just some of
them?

e Look at the log and decide what you want (git log)

« Make a new branch from upstream/master: git checkout -b
feature—-a upstream/master

e Cherry-pick commit(s) that you found in the log:
« git cherry-pick e3153d7
« git cherry-pick f249a34

e Push to the origin: git push -u origin feature-a

What If?

I’'ve made a commit but | forgot a file?
e Add the file that is missing: git add missing.txt

« Update, that is, amend the commit: git commit ——amend

What If?

I’ve added too much to the staging area/commit?
o If not committed yet, reset the file: git reset my-file.txt

 |f have already committed, reset the state to the previous HEAD:
git reset ——soft HEAD~1

Summary

Git helps you keep track of the history of your (nonbinary) files and easily collaborate
with others

e Code
o Thesis (git works with overleaf...)
e Recipes
A lot of material covered today — the goal should be to understand the philosophy

With the exercises, the goal is for you to understand the basics of how to do these
things in practice

Useful links:
o https://training.github.com/downloads/github-git-cheat-sheet/
e https://ohshitgit.com
But in general, if you have a git problem, google (ChatGPT) is your friend

o Countless people have screwed up like you just did before you

https://github.github.chttps://training.github.com/downloads/github-git-cheat-sheet/om/training-kit/downloads/github-gitcheat-sheet.pdf
https://ohshitgit.com

