
PNIF – the PNI file format

Design and development status

Eugen Wintersberger
PNIF-Design state
HDRI-Meeting, 16.05.2011

First and Last Name | Title of Presentation | Date | Page 2

Motivation

Babylonian abundance of file formats for:
● Detector data

● Beamline data

● Simulation programs

● Other sources ...

● Standard procedure how to access data (Data model + API)

● Facilities for defining standardized names (semantic standardization)

Need importers for all these formats
→ large amount of code which is
hard to maintian.

Solution: “standard” file format which provides

First and Last Name | Title of Presentation | Date | Page 3

Why not Nexus?

Nexus has tow major problems:

1. The existing Nexus-API is not useful for beamline applications

2. Only a specification is available → 80 classes with all together ~800 attributes!

3. The specification is ambiguous in many points

Nexus is to complex to implement and to use!

Consequences:

1. Would need a new implementation of the over 80 classes

2. Due to ambiguities the API can hardly implement creation rules of data structures

3. Users must be familiar with all classes and their attributes

First and Last Name | Title of Presentation | Date | Page 4

Users and their demands

● High performance
● Support for many programming environments
● Support for many different operating systems
● Simple to use
● Simple to maintain on long time scales
● Must be able to handle large data volumes
● Must provide a facility to standardize experimental method

The success of a standard
depends on the acceptance

by its users!

First and Last Name | Title of Presentation | Date | Page 5

Basic Design of PNIF

First and Last Name | Title of Presentation | Date | Page 6

Separate Log and Data files!

Data files: *.pnif

Log files: *.pnil

Can make two observations

● Data is organized by “scans” or samples

● Logs events can happen at arbitrary
points in time – organized by time stamps

Scan_1

Point 1
Point 2
Point 3

…...........
Point N

Scan_2

01.02.2011 13:41 – log event

Point 1

Point 2
Point 3

…...........
Point N

Point 1
Point 2
Point 3

…...........
Point N

01.02.2011 13:42 – log event

01.02.2011 13:43 – log event

Advantages of the separation

●Acquisition system not responsible for logging

●Must not touch data file for log information

●Data organization remains consistent

First and Last Name | Title of Presentation | Date | Page 7

Basic Objects – organizing data

Tow types of objects in each file:

Each file represents a tree of objects with the File as its root:

First and Last Name | Title of Presentation | Date | Page 8

Basic objects – objects and attributes

● Every object in the tree has a name (obviously necessary)
● Each object in the tree can hold an arbitrary number of attributes
● Attributes can be objects of type: Scalar, Array, and String
● Some objects have mandatory attribute (except String-objects)!

Mandatory attributes:

➔ All objects except String: description (class String)

➔ Scalar: unit (class String)

➔ Array: unit (class String), axes (class String)

➔ Opaque: mimetype (class String)

Mandatory attributes provide a minimal documentation of
each quantity stored in a file!

First and Last Name | Title of Presentation | Date | Page 9

Basic Concepts – data access

Each object including attributes can be addressed by a unique path:

Accessing an object:
/path/to/object/objectname

Accessing an attribute
/path/to/object/objectname@attributename

Accessing an object and an attribute including file reference:
Filename.pnif:/path/to/object/objectname
Filename.pnif:/path/to/object/objectname@attributename

➔ The same path syntax is used by API calls, Link objects, and maybe in the user-
interface of applications

➔ Log and data files make use of the same API objects → objects can be
referenced between log and data files!

file:///path/to/object/objectname@attributename

First and Last Name | Title of Presentation | Date | Page 10

Data files

First and Last Name | Title of Presentation | Date | Page 11

Organization of objects in the Data-file

Only one restriction:
leaf-nodes must not reside directly
below the File-node!

To ensure that this restriction is not broken:
Nodes & Files act as factories for leafs and
nodes!

File-Node provides only a method to create
Node-objects!

File *f = new File(“test.pnif”);
Node *n;
Array *a;

n = f->createNode(...); //works
a = f->createArray(...); //does not exist

a = n->createArray(...); //works

First and Last Name | Title of Presentation | Date | Page 12

Standardization facility: the Method-Node

Need a method how to standardize methods (semantic standardization):

Objects have arbitrary names

Objects have standardized names

● Objects in the data tree can have
arbitrary names

● MethodNode – a special node: Objects
below this node have fixed and
standardized names

● An application requesting data for a
standardized method will find this data
item by its standard name below the
corresponding MethodNode

● Multiple methods in a single tree are
allowed

First and Last Name | Title of Presentation | Date | Page 13

X-ray reflectometry – a simple example

Beamline dependent part

Standardized part

Advantages of this concept:
➔ Beamline scientists can layout data in a

way appropriate for them
➔ Standard applications can still obtain data

by standardized name from defined
locations

First and Last Name | Title of Presentation | Date | Page 14

The log system

First and Last Name | Title of Presentation | Date | Page 15

The logging system

➔Log data from different sources is gathered by a logging server and dumped to a file!
➔File rotation prohibits log-files from growing too large
➔Logging system and data acquisition system are distinct instances!

First and Last Name | Title of Presentation | Date | Page 16

The Log-file structure

Long double scalar in seconds
since the epoch

IP of the event issuer

ID of the submitting instance

Title of the log message

Log message content

First and Last Name | Title of Presentation | Date | Page 17

Log example: beamline setup

Idea: store beamline elements along the beam path

➔ Such a sketch can be produced by a rudimentary SVG editor using some
standard symbols

➔ SVG stream can be stored in the data section of a log entry

➔ SVG can be rendered by a lot of web-browsers and image viewers

First and Last Name | Title of Presentation | Date | Page 18

Standardization process

First and Last Name | Title of Presentation | Date | Page 19

How to standardize a method?

➔Q a vector of quantities needed by the scientist to evaluate the data

➔E a vector of quantities accessible by the experiment

➔Units of the components of Q and E

➔T[] a transformation with Q=T[E]

A method M can thus be defined as M:={Q,E,T[]}

Question: what quantities are needed to define a standard?

Advantage of this approach:

●Completeness can be verified by evaluating T[]

●Not only the quantities (names) are defined but also their relation to each other

●Can be cited by users if published

First and Last Name | Title of Presentation | Date | Page 20

An application to XRR and XRD

k=
2π
λ

I (qx , qz)=
I (ω ,2Θ)

τmonitor

q x=2ksin (
2Θ
2

)sin (ω−
2Θ
2

)

q z=2k sin(
2Θ
2

)cos(ω−
2Θ
2

)

T[]:

quantity unit

ω (°)

2Θ (°)

I(ω,2Θ) (counts)

τ (seconds)

monitor (a.u.)

λ (Å)

q
x

(1/Å)

q
z

(1/Å)

I(q
x
,q

z
) (a.u.)

E

Q

First and Last Name | Title of Presentation | Date | Page 21

Applicatoin to Gracing Incidence Diffraction (GID)

k=
2π
λ

I (qx , qz)=
I

τmonitor

q x=−qmcos (β)

q y=−qmsin (β)

qm=k √cos2(αi)−2cos (αi)cos (α f)cos (2Θ)+cos2(α f)

sin (β)=
k cos(α f)sin (2Θ)

qm

quantity unit

q
x

(1/Å)

q
y

(1/Å)

q
z

(1/Å)

I(q
x
,q

y
,q

z
) (a.u.)

quantity unit

ω (°)

2Θ (°)

I(ω,2Θ) (counts)

τ (seconds)

monitor (a.u.)

λ (Å)

α
i

(°)

α
f

(°)

E QT[]:

First and Last Name | Title of Presentation | Date | Page 22

The most general PNI scattering experiment

In order to define standards we need to define positions in space → consider the
most general PNI experiment:

➔Incident beam of probe particles (photons, ions, neutrons) impinges on the target

➔Target = usually the sample under investigation

➔Exiting particles (as a reaction on the incident beam) are recorded by a detector

Positions with reference to the target are important!

First and Last Name | Title of Presentation | Date | Page 23

Coordinate Frames

Cartesian coordinate frame Spherical coordinate frame

➔ Origin is defined by the scattering center

➔ Z-axis is defined by the direction of the beam directly before the sample

➔ A unique transformation exists between the two systems

First and Last Name | Title of Presentation | Date | Page 24

Implementation details

First and Last Name | Title of Presentation | Date | Page 25

Implementation – Part I

File format will be implemented as a C++ library with bindings to many different
languages

Physically data is stored in a particular format provided by the backend!

First and Last Name | Title of Presentation | Date | Page 26

Implementation – Part II

Why different backends? Why not simply HDF5?

● Do not want to depend on a particular physical file format

● HDF5 API may changes → do not want to change application code

● Custom format maybe necessary for performance reasons

● ...

Use a Bridge pattern (see GOF) to connect to the backend → can develop
backend code and user PNIF-API independently!

First and Last Name | Title of Presentation | Date | Page 27

Implementation – Part III

Level 0 → reads and writes data to disk (backend Implementation)

Level 1 → raw IO objects – no limitations in nesting, no required attributes

Level 2 → PNIF user API – including mandatory attributes for objects and

object nesting restrictions.

First and Last Name | Title of Presentation | Date | Page 28

Where do I see PNIF and CDMA (SOLEIL)?

●CMDA allows full read/write access

●Will be available in C++ in future

●C++ will allow bindings from CDMA to
other languages

CDMA gives PNIF unaware applications
access to PNIF data files!

First and Last Name | Title of Presentation | Date | Page 29

Conclusion

➔ PNIF is independent of the physical file format

➔ Thin – wrapper => should obtain nearly native performance of the backend format

➔ Only a few classes of objects → easy to use and to learn

➔ Backend and user API can be developed independently → easy to maintain

➔ C++ allows the implementation of bindings to a lot of other languages

➔ Provides facilities to implement standard methods

➔ Provides a procedure to define standard methods

Thank you for your attention …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

