A(nother) First Look: Geant4 vs BIBAE photons from Pi0s comparison

Slides from Monday

Reminder on integration

- Fully conditioned BIBAE (2x angles and energy)
- Simulate down to 10 GeV photons, electrons and positrons
- Additionally exclude regions of detector where BIBAE can't be applied
 - Corners of octagonal barrel
 - Transition between barrel and endcap

- Model now fully interfaced through DD4HEP and Geant4- can run full reconstruction
- Some results fresh off the press...

Pi0 photons: simulation to reconstruction

- Simulated 9,000 ee → ττ with the requirement that two photons produced by pi0 were above 10 GeV (trigger fast vs full sim)
- Same generator files used in both cases
- All photons and e+/- with energy > 10 GeV (+ passing geometrical constraints from trigger) were simulated with BIB-AE in BIB-AE sample
- Apply full standard reconstruction to all samples
- First, focused on photons from pi0s:
 - Reco-MCTruth link to get all pfos linked to mc photon
 - Require that parent of the photon is a pi0 and that the pi0 was produced by tau (through intermediate decay)
 - Also have restriction of mc photon energy > 10GeV, with geometry constraints on mc photon (see next slide)

Pi0 photons: simulation to reconstruction

- Have a total of 12684 G4 PFOs linked to MC photon
 - 12425 are reconstructed as a photon (the rest as neutrons)
- Have a total of 12459 BIBAE PFOs linked to MC photon
 - 12286 are reconstructed as a photon (the rest as neutrons)
- Will now show plots for PFOs reconstructed as a photon that are linked to an MC photon

Pi0 photons: Energy vs num. PFOs

Pi0 photons: PFO Energy – MC energy vs num. PFOs

Pi0 photons: Theta and Phi vs num. PFOs

Pi0 photons: PFO Theta/Phi – MC Theta/Phi vs num. PFOs

Now Pi0s...

- Loop over Pi0 candidates check they are linked to pi0 from a tau and both MC photons have E >10 GeV
- Also apply geometry cuts

- Have a total of 2561 Geant4 pi0 candidates
- Have a total of 2742 BIBAE pi0 candidates

Pi0 Energy vs num. Pi0 Rec

Pi0 Energy Rec – Energy MC vs num. Pi0 Rec

Pi0 Momentum vs num. Pi0 Rec

Pi0 Momentum Rec - Momentum MC vs num. Pi0 Rec

Pi0 Theta/Phi vs num. Pi0 Rec

Uncertainties

Need to add statistical errors

- Additional uncertainty from necessary change in G4 version due to addition of Fast Sim hooks in G4 V11
 - Treat as uncertainty on MC

Potential Issue: Dead Material?

- BIBAE is a regular grid model: when handing back to G4 treat as a coarse grained point cloud, with separation = cell size
- This means that if hit lands in dead material entire hit is thrown away by G4- saw this previously (and expected):
 - Somewhat compensated by purely regular ECAL used for training

Potential Issue: Dead Material?

- BIBAE is a regular grid model: when handing back to G4 treat as a coarse grained point cloud, with separation = cell size
- This means that if hit lands in dead material entire hit is thrown away by G4- saw this previously (and expected):
- However: depending where in geometry you land, effects can range from this ...

Potential Issue: Dead Material?

- BIBAE is a regular grid model: when handing back to G4 treat as a coarse grained point cloud, with separation = cell size
- This means that if hit lands in dead material entire hit is thrown away by G4- saw this previously (and expected):
- To this ...

Potential Issue: Dead Material Post Rec

New Plots

Two photon-system Invariant Mass vs num. Pi0 Rec

Pi0 di-photon separation vs num. Pi0 Rec

Separation of PFO cluster positions (require one cluster)

Cluster ITheta/IPhi vs num. Pi0 Rec

Next steps

- Compare to previous version of Geant4 (simulate tau pairs)
- Definitely suspect insensitive volumes are playing a large role
 - Try hit-splitting approach?
- Statistics? (compute+storage)
- Proper compute speed benchmark (+ for Bhabhas)

Coherent story for thesis (burn some distributions for physics)

Could also try:

- Going up the MC chain (rather than down)- Would help find photons/pi0s that aren't recoed, but what would we learn?
- Dedicated di-photon samples- clean effect of overlapping showers (radial profile)
- Look at event displays to try to find cases of missed photons- might be difficult to figure out geometry effects
- I don't have time for everything --> be selective

More Plots!

Pi0 photons: Momentum

Pi0 photons: PFO Momentum – MC Momentum

MC Pi0 – daughter correlations

MC Pi0 - Momentum

MC Pi0 - Energy

MC Pi0 - Theta

MC Pi0 - pz

Pi0 Pt and Pz

Longitudinal

Nhits

Visible energy

Cell Energy

Radial Energy

