Update on digitization procedure of MC simulation of LUXE ECAL

Kamil Zembaczyński¹

Advisors: Wolfgang Lohmann², Aleksander Filip Żarnecki¹, Grzegorz Grzelak¹

¹University of Warsaw ²Deutsches Elektronen-Synchrotron

Plan of the study

- Implement a procedure of converting energy deposits from Geant4 simulation into ADC units,
- Adjust calibration parameters to obtain agreement between TB results and MC simulation,
- Apply the procedure to MC with tungsten absorber in front of the sensor and check the agreement with TB results.

Files used in the analysis

- TB_FIRE_4533.pickle: TB data with Si sensor (500μm) without tungsten layer, 1M events,
- TB_FIRE_4749.pickle: TB data with Si sensor (500μm) with tungsten layer, 500k events,
- Si-e-5GeV-500um-ev500k.root: Geant4 simulation, 500k events, 500µm silicon sensor, generated by Mihai Potlog,
- mc21.singlePositron_50GeV_ECALP_run2.G4gun.SIM.se0003.root: Geant4 simulation, 20k events, 320μm silicon sensor, generated by Shan Huang,
- Si-500um-e-5GeV-1W-ev1M.root: Geant4 simulation, 1M events, 500µm silicon sensor, generated by Mihai Potlog,

Setup of the Langaus function fit

- Histogram of single-particle signal distribution (both from MC and testbeam data) is fitted with Langaus function (Landau & Gauss)
- Langaus function has four parameters:
 - LanWidth: scale parameter of the Landau distribution
 - MP: MPV of the Landau distribution
 - Area: total area, normalization constant
 - GausWidth: width of the convoluted Gaussian function
- Files without tungsten: only events with one hit were selected, to minimize effects caused by secondary particles
- Files with tungsten: only cells with non-zero deposits were considered in conversion procedure

Conversion procedure

Conversion procedure from MeV to ADC:

- 1)Conversion from MeV to fC using conversion factor: a*3.6 eV/electron-hole, where a is an calibration parameter,
- 2)Conversion from fC to ADC using gain factor for high-gain: 4.07 ADC/fC, assume saturation at 200 fC,
- 3)Additional Gaussian variation with sigma equal to noise parameter (taken from pedestal measurements),
- 4)Additional smearing from Landau distribution (with mean equal to zero and adjustable scale parameter, LanPar).

Langaus fit to TB data, without tungsten absorber

Result of the conversion procedure

• noise = 1.371 ADC

• a = 1.315

• LanPar = 0.212

All parameters are in go agreement with test-beam.

Parameters from fit to test-beam data: LanWidth = 1.582 MP = 20.4 GausWidth = 1.665

Result of the conversion procedure

- noise = 1.371 ADC
- a = 1.315
- LanPar = 0.212

 relative difference between MC sample and test-beam data is presented

Langaus fit to TB data, with 1X₀ tungsten absorber

Previous result

- noise = 1.371 ADC
- a = 1.315
- LanPar = 0.212
- distributions of signal from testbeam are presented together with MC sample
- In MC with tungsten absorber the sensor is 320µm thick
- Need for scaling every deposit by the factor 500/320 to get proper MPV
- Larger Landau fluctuations expected for thinner sensor, no way to correct for that → larger Landau width expected

Applying procedure to MC sample with tungsten absorber

- noise = 1.371 ADC
- a = 1.256
- LanPar = 0.212

 distributions of signal from test-beam are presented together with MC sample

MC distribution obtained from files with 500μm sensor

Applying procedure to MC sample with tungsten absorber

- noise = 1.371 ADC
- a = 1.256
- LanPar = 0.212

 relative difference between MC sample and test-beam data is presented

References

- 1) Jakub Moroń, FLAME SoC readout ASIC for electromagnetic calorimeter, TWEPP 2022,
- 2)Marek Idzik, The FLAME and FLAXE ASICs, XII Front-End Electronics Workshop 2023,
- 3) Wikipedia properties of Landau distribution.

Conclusion

- 1)Parameters of conversion procedure (noise, calibration factor, LanPar) can be adjusted to reproduce the shape of deposits distribution from TB.
- 2) Why the width of Landau distribution doesn't agree between TB and MC?
- 3)MC samples with conversion procedure applied does reproduce data (after correcting for different thickness of sensor in TB and MC).