ATLAS High Level Trigger Monitoring

Outline

- Operational Monitoring Display of TDAQ and HLT (OMD)
- HLT Trigger Rate Monitoring and display (HLTpresenter)

HU Berlin

DQ monitoring on HLT

Sami Kama, Judita Mamuzic, Voica Radescu

Gordon Fischer, Christiane Risler, Martin zur Nedden

Operational Monitoring Display (OMD)

ATLAS Trigger and DAQ: data flow on complex, distributed system

gather and display information on operational status of T/DAQ quickly identify possible problems related with T/DAQ infrastructure

examples:

- CPU utilization
- available disk space on nodes
- # active nodes
- number of events processed / time
- average processing time/ event
- event size

any info available from IS

flexible, generic display:

- $\Sigma <> \sigma f(t)$
- configurable for expert or shift

Qt, C++ based, replaces IS logger

Operational Monitoring Display (OMD)

Operational Monitoring Display (OMD)

HLT Trigger Rate Monitoring

- number of accepted events by each Trigger level
 rate for each chain, signatures of each chain (stepwise) and individual TE
- part of HLT Steering software running on each farm node (TrigSteerMonitor) access to Steering Descision
- produce several 1D and 2D histograms, published to OH

HU Berlin

HLT Trigger Rate Monitoring

Rate calculation (based on info gathered from all farm nodes)

- rate averaged over luminosity block (few minutes): well defined t_0 and t_{end} (from LVL1, LHC clock) N / ΔT
- actual rate (averaged over few seconds): problems:

which ΔT to use? CPU time on PT, L2PU? Event Time stamp? How to combine info from different nodes (diff ΔT)?

```
instead use LVL1 rate :
acceptance on LVL2 (EF) * LVL1 output rate
(i.e. N norm. to # input events = LVL1 output)
```


Trigger Rate Display: HLT Presenter

HLT Steering

Number of events for chains, signatures, TE as well as total, after prescale, pass through etc.

OH

every PT/ L2PU publishes
Histogram

DQMF *

- calculate Rate
- Produce DQ result publish to OH

make use of DQMF (Data Quality Monitoring Framework) to calculate rates and to compare with reference.

archive result

HLTP

- display rates, DQ result, HLT farm status
- total rates and for slices, chains, signature
- actual and time series graphs

risler@cern.ch

Trigger Rate Display: HLT Presenter

Display information on HLT Rates and also LVL1 rates for shift crew

Trigger Rate Display: HLT Presenter

DQ Monitoring on HLT

aim: avoid faulty data taking

- spot problems of HLT or other subdetectors and their sources online
- exclude "bad" data from offline analysis
- 2 aspects: HLT as subdetector
 monitor information sensitive to malfunctions in the
 HLT event selection
 - DQ using HLT info
 HLT reconstructed objects, rates sensitive to other subdetectors

DQ Monitoring on HLT

• Trigger decision and also DQ Monitoring organised in slices e.g. B - , τ -, \pm ts- , μ -, e/ γ -slice monitor information e.g. variables used to select events, spectra of reconstructed objects, etc. examples from muon slice: residuals, phi, x and y position of muon, chi2 of tracks, ... identify overlap between slices, missing DQ information

- collect DQ information on a distributed system:
 each farm node processe single event
 published by HLT algorightms as histos to OH
 DQ histos gathered from all nodes
- Online DQ assessment:
 usage of DQMF to analyse histograms and produce DQ result

tested DQMF checks for many HLT DQ histos in tech. run now: need to define test and customise algorithms BUT human interaction (especially in startup) indispensable

Outlook

- OMD and HLTP tested in technical runs
 - :) OMD useful to monitor whats going on
 - :) HLTP first tested with info flow (HLT Steering, OH, DQMF, HLTP)
- HLT Rate Monitoring Code
 well advanced, some functionalities
 missing e.g. slices, exclusive rates
- DQ HLT Monitoring
 phone meeting next week reports from slice representatives on which DQ info is available DQMF usage

backup slides

for further discussion ...

Some OMD Use Cases

- If the average CPU utilization of EF or L2PU farms are low it may show that they don't receive events
- If the average or the total virtual memory size of a L2/EF farm is increasing over time it is a sign of memory leak in the algorithms.
- If the average queue size is small but the standard deviation is high this might be a sign of incorrectly distributed workload.

Data Quality Monitoring Framework

- automated Data Quality tests
 Offline (HistogramAnalyzer) or online (DQMF)
- Interface to DQ checks (dqm_core)
 algorithms performed on histograms
 e.g. statistical comparison to reference
 mean, RMS, ...
 any customised algo (e.g. Trigger Rate caluclation)
- online environment
 calls algorithm whenever histo published to OH
 perform checks (comparison with reference)
- produces DQ Result witht DQ Status flag (bad, medium, good)
- HLTP and DQM on HLT: users of DQMF

https://twiki.cern.ch/twiki/bin/view/Atlas/DataQualityMonitoring

HLT DQ Monitoring using DQMF techrun May

Technical run: DQ checks on HLT histograms

many histos checked with Histogram_Not_Empty
 (~100 hundred)

 compare RMS, Mean to thresholds for some other histos using CheckHisto_Mean CheckHisto_RMS

muon slice: residuals, phi, x and y position of muon,

chi2 of tracks, ...

tau slice: hit distributions

E/gamma: Jet Energy on EF and LVL2

 also tried comparison to references (bin- by- bin, Chi2Test) for some histos

Online DQ tests should be robust

Compare histo with reference: mean and variance of distributions

alternative: use robust moments suggestion by

Thomas Naumann

distributions are not normal, but maybe skewed, have outliers or tails

e.g.

weights
$$w_i = \exp[-(x_i - \langle x \rangle)^2 / \sigma^2]$$

and use $\sum w_i x_i / \sum w_i$ instead of $\langle x \rangle$
and $\sum w_i x_i^2 / \sum w_i$ instead of σ^2

for online checking these (or other robust moments) might turn out to be helpful

more investigations and experience on how to best compare online histos needed ...

