Form factors and dispersive bounds: the low recoil region

Aoife Bharucha

As in: A. Bharucha, T. Feldmann and M. Wick, "Theoretical and Phenomenological Constraints on Form Factors for Radiative and Semi-Leptonic B-Meson Decays," JHEP **1009** (2010) 090 [arXiv:1004.3249 [hep-ph]]

Rare b-Decays @ Low Recoil: DESY, Hamburg, June 17th, 2011

- Exclusive decays (we focus on $B \to K^{(*)}$, $B \to \rho$ and $B_2 \to \phi$) require form factors: non-perturbative quantities
- LCSR¹ at low q^2 , Lattice² at high q^2 (for difficult channels, e.g. unstable final state, results still in progress, see talk by M. Wingate)
- Independent attempt to fit LCSR and Lattice using series expansion, coefficients satisfy dispersive bounds (new bound for tensor current)
- Investigate possibility to extrapolate LCSR to high q^2 where Lattice unavailable

²see e.g. A. Al-Haydari *et al.* [QCDSF Collaboration], Eur. Phys. J. A **43**, 107 (2010) [arXiv:0903.1664 [hep-lat]]

Aoife Bharucha (Universität Hamburg)

¹see e.g. P. Ball and R. Zwicky, Phys. Rev. D **71** (2005) 014015 [arXiv:hep-ph/0406232] and Phys. Rev. D **71** (2005) 014029 [arXiv:hep-ph/0412079]

- Definition of helicity amplitudes
- Series expansion/ Simplified series expansion
- Brief derivation of Dispersive bounds
- Results of fits for $B \to K^{(*)}$

$B{\rightarrow}P$ Form Factors:

Conventionally define $f_0(q^2),\,f_+(q^2)$ and $f_T(q^2)$ via

$$\langle P(k) | \bar{q} \gamma_{\mu} b | B(p) \rangle = \left(p_{\mu} + k_{\mu} - q_{\mu} \, \frac{m_B^2 - m_P^2}{q^2} \right) \mathbf{f}_+(\mathbf{q}^2) + \frac{m_B^2 - m_P^2}{q^2} \, q_{\mu} \, \mathbf{f}_0(\mathbf{q}^2) \,,$$

$$\langle P(k) | \bar{q} \sigma_{\mu\nu} q^{\nu} b | B(p) \rangle = \frac{i}{m_B + m_P} \left(q^2 (p+k)_{\mu} - (m_B^2 - m_P^2) \, q_{\mu} \right) \, \mathbf{f}_{\mathsf{T}}(\mathbf{q}^2) \,.$$

Note $q^2 = (p - k)^2$ and $f_+(0) = f_0(0)$

Define HAs in order to simplify:

- implementation of dispersive bounds (will discuss later)
- choice of below-threshold resonance as have definite spin-parity
- relation to heavy quark/large energy limit
- expressions for observables

$B{\rightarrow}P$ Helicity Amplitudes:

$$egin{aligned} \mathcal{A}_{V,\sigma}(q^2) &= \sqrt{rac{q^2}{\lambda}} \, arepsilon_{\sigma}^{*\mu}(q) \, \langle \mathcal{P}(k) | ar{q} \, \gamma_{\mu} \, b | ar{B}(p)
angle \, , \ \mathcal{A}_{T,\sigma}(q^2) &= (-i) \sqrt{rac{1}{\lambda}} \, arepsilon_{\sigma}^{*\mu}(q) \, \langle \mathcal{P}(k) | ar{q} \, \sigma_{\mu
u} q^{
u} \, b | ar{B}(p)
angle \, , \end{aligned}$$

where $\varepsilon_{\sigma}^{*\mu}(q)$ are transverse, longitudinal or time-like polarization vectors for $\sigma=\pm,0,t$

$$egin{aligned} \mathcal{A}_{V,0}(q^2) &= f_+(q^2)\,, \qquad \mathcal{A}_{V,t}(q^2) &= rac{m_B^2 - m_P^2}{\sqrt{\lambda}}\,f_0(q^2)\,, \ \mathcal{A}_{T,0}(q^2) &= rac{\sqrt{q^2}}{m_B + m_P}\,f_T(q^2)\,. \end{aligned}$$

- An important factor are any low-lying resonances present with appropriate quantum numbers and $t_- < m_{
 m R}^2 < t_+$, where $t_\pm = m_B \pm m_L$
- Often parameterisations (i.e. Ball/Zwicky, Becirevic/Kaidalov) include such resonances via simple pole $P(t) = 1 t/m_R^2$
- Series expansion approach includes such resonances via Blaschke factor, chosen to be $B(t) = z(t, m_{\rm R}^2)$ (see following slide)

Series expansion type parameterisations

• $z(t) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$ excellent expansion parameter for the FFs, and allows us to impose dispersive bounds

- t_0 can be optimised to reduce $|z(t)|_{\text{max}}$, $t_0|_{\text{opt.}} = t_+ \left(1 \sqrt{1 \frac{t_-}{t_+}}\right)$
- Series Expansion (SE)³ corresponds to:

$$f(t) = \frac{1}{B(t)\phi_f(t)}\sum_k \alpha_k z^k(t)$$

• Alternative version is Simplified series expansion (SSE)⁴:

$$f(t) = \frac{1}{P(t)} \sum_{k} \tilde{\alpha}_{k} z^{k}(t, t_{0}). \qquad (1)$$

³C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. Lett. **74**, 4603 (1995) [arXiv:hep-ph/9412324] and I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B **530**, 153 (1998) [arXiv:hep-ph/9712417]

⁴C. Bourrely, I. Caprini and L. Lellouch, Phys. Rev. D **79**, 013008 (2009) [arXiv:0807.2722 [hep-ph]]

Aoife Bharucha (Universität Hamburg)

What are dispersive bounds?

Consider the correlator: $\Pi^{X}_{\mu\nu}(q^2) = i \int d^4x \, e^{i \, q \cdot x} \langle 0 | \operatorname{T} j^{X}_{\mu}(x) j^{\dagger X}_{\nu}(0) | 0 \rangle$ for currents e.g. $j^{V}_{\mu} = \bar{q} \gamma_{\mu} b$, $j^{V-A}_{\mu} = \bar{q} \gamma_{\mu} (1 - \gamma^5) b$, etc.

Possible to calculate via Hadronic represenation or OPE

Use projectors $P_L^{\mu\nu}(q^2) = \frac{q^{\mu}q^{\nu}}{q^2}$, $P_T^{\mu\nu}(q^2) = \frac{1}{D-1} \left(\frac{q^{\mu}q^{\nu}}{q^2} - g^{\mu\nu} \right)$ to rewrite $\Pi_{\mu\nu}^X(q^2)$ using Lorentz scalars

$$\Pi_{I}^{X}(q^{2}) \equiv P_{I}^{\mu\nu}(q^{2}) \, \Pi_{\mu\nu}^{X}(q^{2}) \,, \qquad (I = L, T).$$

which satisfy the $n^{\rm th}$ subtracted dispersion relation,

$$\chi_I^X(n) = \frac{1}{n!} \left. \frac{d^n \Pi_X(q^2)}{dq^{2n}} \right|_{q^2=0} = \frac{1}{\pi} \int_0^\infty dt \left. \frac{\operatorname{Im} \Pi_I^X(t)}{(t-q^2)^{n+1}} \right|_{q^2=0},$$

$$\operatorname{Im} \Pi_{I}^{X}(q^{2}) = \frac{1}{2} \sum_{\Gamma} \int d\rho_{\Gamma} \left(2\pi\right)^{4} \delta^{4}(q - p_{\Gamma}) P_{I}^{\mu\nu} \left\langle 0 \right| j_{\mu}^{X} \left| \Gamma \right\rangle \left\langle \Gamma \right| j_{\nu}^{\dagger X} \left| 0 \right\rangle$$

Note crossing symmetry relates decay region $0 < q^2 < t_-$ and pair-production region $q^2 > t_+$

$$\begin{split} \operatorname{Im} \mathsf{\Pi}_{I,BL}^{\mathsf{X}}(q^{2}) &= \eta \, \int d\rho_{BL} \, P_{I}^{\mu\nu} \, \left\langle 0 \right| j_{\mu}^{\mathsf{X}} \left| BL \right\rangle \left\langle BL \right| j_{\nu}^{\dagger \mathsf{X}} \left| 0 \right\rangle \leq \operatorname{Im} \mathsf{\Pi}_{I}^{\mathsf{X}}(t) \\ P_{T}^{\mu\nu} \left\langle P \right| j_{\mu}^{\mathsf{V}} \left| B \right\rangle \left\langle B \right| j_{\nu}^{\dagger \mathsf{V}} \left| P \right\rangle &= \frac{\lambda}{3q^{2}} \left| \mathcal{A}_{\mathsf{V},0} \right|^{2} , \\ P_{L}^{\mu\nu} \left\langle P \right| j_{\mu}^{\mathsf{V}} \left| B \right\rangle \left\langle B \right| j_{\nu}^{\dagger \mathsf{V}} \left| P \right\rangle &= \frac{\lambda}{q^{2}} \left| \mathcal{A}_{\mathsf{V},t} \right|^{2} , \\ P_{T}^{\mu\nu} \left\langle P \right| j_{\mu}^{\mathsf{T}} \left| B \right\rangle \left\langle B \right| j_{\nu}^{\dagger \mathsf{T}} \left| P \right\rangle &= \frac{\lambda}{3} \left| \mathcal{A}_{T,0} \right|^{2} , \end{split}$$

On the other hand, same correlator can be calculated via OPE:

$$\Pi^{X}_{I,\mathrm{OPE}}(q^2) = \sum_{k=1}^{\infty} C^{X}_{I,k}(q^2) \left< O_k \right>$$

- $C_{l,n}^X(q)$ are Wilson coefficients for a given current X and projector l
- \mathcal{O}_n are local gauge-invariant operators, ordered by increasing dimension k
- Consider identity operator and non-perturbative operators: quark condensate ⟨m_q q
 q
 q
), the gluon condensate ⟨^α_s/π G²⟩, and the mixed condensate ⟨g_s q
 (σ · G) q⟩
- Eventually require coefficients describing χ^X_l(n) instead of Π^X_{l,OPE}(q²) to impose bounds

Imposing the bounds

HAs diagonalise unitarity relations:

$$\frac{1}{\pi} \int_{0}^{\infty} dt \frac{\mathrm{Im} \, \Pi_{I,BL}^{X}(t)}{(t-q^{2})^{n+1}} \Big|_{q^{2}=0} = \frac{1}{\pi} \int_{t_{+}}^{\infty} dt \frac{\eta \, \lambda^{3/2}(t)}{48\pi \, t^{n+3}} \left| \mathcal{A}_{I}^{X}(t) \right|^{2} \leq \chi_{I,\mathrm{OPE}}^{X,n} \, ,$$

 $\frac{1}{2\pi i} \oint \frac{dz}{z} |\phi_I^X A_I^X|^2(z) \le 1 \qquad \Rightarrow \text{Define universal } \phi$

HA parameterised via

$$A_{I}^{X}(t) = \frac{(\sqrt{-z(t,0)})^{m}(\sqrt{z(t,t_{-})})^{I}}{B(t)\phi_{I}^{X}(t)} \sum_{k=0}^{\infty} \alpha_{k} z^{k}$$

so coefficients satisfy..... $\sum_{k=0}^{k} \alpha_k^2 < 1$

q	Correlator	Subtractions	LO	NLO	$\langle ar{q}q angle$	$\left< rac{lpha}{\pi} {\it G}^2 \right>$	$\langle \bar{q} G q \rangle$	Σ
	$100 imes m_b^2 \chi^S$	2	1.233	0.571	0.024	0.001	-0.003	1.83
	$100 imes m_b^2 \chi^P$	2	1.296	0.608	0.022	0.001	-0.003	1.93
	$100 imes\chi^V_L$	1	1.172	0.229	0.023	0.000	-0.003	1.42
5	$100 imes\chi^{A}_{L}$	1	1.361	0.187	0.023	0.002	-0.003	1.57
	$100 imes m_b^2\chi_T^V$	2	0.980	0.237	-0.022	0.000	0.005	1.20
	$100 imes m_b^2\chi_T^A$	2	0.916	0.238	-0.024	-0.002	0.006	1.13
	$100 imes m_b^2 \chi_T^T$	3	2.652	0.569	-0.023	0.001	0.006	3.21
	$100 imes m_b^2\chi_T^{AT}$	3	2.404	0.603	-0.024	-0.002	0.007	2.99

$$\begin{split} \mu &= m_b = 4.2 \text{ GeV}, \ m_d = 4.8 \text{ MeV}, \ m_s = 104 \text{ MeV}, \ \alpha_s = 0.2185, \ \left\langle \bar{d}d \right\rangle = (278 \text{ MeV})^3, \\ \left\langle \bar{s}s \right\rangle &= 0.8 \left\langle \bar{d}d \right\rangle, \ \left\langle \frac{\alpha_s}{\pi} \ G^2 \right\rangle = 0.038 \text{ GeV}^4, \ \left\langle \bar{q}Gq \right\rangle = (1.4 \text{ GeV})^2 \left\langle \bar{q}q \right\rangle \end{split}$$

⁵Results consistent with C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. Lett. **74**, 4603 (1995) [arXiv:hep-ph/9412324], M. Jamin and M. Munz, Z. Phys. C **60**, 569 (1993) [arXiv:hep-ph/9208201]

Aoife Bharucha (Universität Hamburg)

Results: $\mathcal{A}_{V,0}$ for $B \to K$

Fit of SE (left) and SSE (right) to LCSR (top) and to LCSR and Lattice (bottom). LCSR and Lattice data shown by black points.

bsll2011, DESY

Transition	J ^P	Mass (GeV)	JP	Mass (GeV)	Ref.
b ightarrow d	0-	5.28	1-	5.33	PDG
	0+	5.63	1^+	5.68	BEH
	1+	5.72	2+	5.75	PDG
b ightarrow s	0-	5.37	1^{-}	5.42	PDG
	0+	5.72	1^+	5.77	BEH
	1+	5.83	2+	5.84	PDG

Masses of resonances from PDG and/or theoretical estimates from heavy-quark/chiral symmetry by Bardeen, Eichten and Hill, 2003 (BEH)⁶

⁶Masses for $(0^+, 1^+)$ not yet confirmed experimentally. PDG quotes "effective" resonances $B_J^*(5698)$ and $B_{sJ}^*(5853)$ with undetermined spin/parity.

Results: $\mathcal{A}_{V,t}$ for $B \to K$

Fit of SE (left) and SSE (right) to LCSR (top) and to LCSR and Lattice (bottom)

Results: $\mathcal{A}_{V,t}$ for $B \to K$

Without using the scalar B_s resonance in the fit ansatz.

New Lattice data for $B \rightarrow K^*$

Fit of SSE(left) to LCSR(top) and to LCSR and Lattice⁷(bottom)

Aoife Bharucha (Universität Hamburg)

⁷Z. Liu, S. Meinel, A. Hart, R. R. Horgan, E. H. Muller and M. Wingate, arXiv:1101.2726 [hep-ph]

Summary

- 2 coefficient expansion provides a good description of form factors over entire range in q^2
- Define convenient helicity amplitudes
- Calculate dispersive bounds for the tensor current at NLO
- Good agreement with/without lattice: reliable fits

Outlook

- Include latest Lattice results for $B \to K^*$ etc.
- Re-normalization of LCSR at $q^2 = 0$ using $B \to K^* \gamma$ experimental results

•
$$\chi^2(\vec{\theta}) = \left(F_i - F(t_i, \vec{\theta})\right) \left[V^{-1}\right]_{ij} \left(F_j - F(t_j, \vec{\theta})\right)$$
,

• For SE: $\vec{\theta} = \{\alpha_0, \alpha_1\}$, satisfying $\sum \alpha_i^2 \stackrel{!}{<} 1$

• For SSE:
$$ec{ heta}=\{ ilde{lpha}_0, ilde{lpha}_1\}$$
, satisfying $\sum_{i,j=0}^1 \mathit{C}_{ij}\, ilde{lpha}_i ilde{lpha}_j\stackrel{!}{<}1$

• Combine LCSR and Lattice in Block Diagonal form: $\chi^2 = \chi^2_{\rm LCSR} + \chi^2_{\rm Lat}$

Aoife Bharucha (Universität Hamburg)

⁸We closely follow the procedure outlined in C. Bourrely, I. Caprini and L. Lellouch, Phys. Rev. D **79**, 013008 (2009)[arXiv:0807.2722 [hep-ph]]

A_X	m _R	α_0	α_1	Fit to	$\chi^2_{ m fit}$	$X \sum_{i} \alpha_{i}^{2}$
$\mathcal{A}_{V,0} \ \mathcal{A}_{V,t} \ \mathcal{A}_{V,t}$	5.41 - 5.72	$\begin{array}{c} -2.4\times10^{-2}\\ -6.8\times10^{-2}\\ -4.8\times10^{-2} \end{array}$	$\begin{array}{c} 6.2 \times 10^{-2} \\ 0.20 \\ 0.11 \end{array}$	LCSR and Lattice LCSR and Lattice LCSR and Lattice	$\begin{array}{c} 5.07 \times 10^{-3} \\ 0.200 \\ 1.54 \times 10^{-4} \end{array}$	$\begin{array}{c} 4.43 \times 10^{-3} \\ 0.129 \\ 4.34 \times 10^{-2} \end{array}$
$ \begin{array}{c} \mathcal{A}_{V,0} \\ \mathcal{A}_{V,t} \\ \mathcal{A}_{V,t} \\ \mathcal{A}_{T,0} \end{array} $	5.41 - 5.72 5.41	$\begin{array}{c} -2.8\times10^{-2}\\ -6.7\times10^{-2}\\ -2.5\times10^{-2}\\ -4.5\times10^{-2} \end{array}$	$\begin{array}{c} 6.0\times 10^{-2}\\ 0.18\\ 7.2\times 10^{-2}\\ 8.9\times 10^{-2} \end{array}$	LCSR LCSR LCSR LCSR	$\begin{array}{c} 3.94 \times 10^{-3} \\ 1.44 \times 10^{-3} \\ 0.329 \\ 0.234 \end{array}$	$\begin{array}{c} 4.40 \times 10^{-3} \\ 0.111 \\ 5.77 \times 10^{-3} \\ 2.99 \times 10^{-2} \end{array}$

 $B \rightarrow K$: Fit of SE parameterisation to LCSR or LCSR/Lattice results, for $A_{V,0}$ (X = 1), $A_{V,t}$ (X = 3) and $A_{T,0}$ (X = 1)

A _X	m _R	$\tilde{\alpha}_0$	$\tilde{\alpha}_1$	Fit to	$\chi^2_{\rm fit}$	$X \sum_{i,j} C_{i,j} \tilde{\alpha}_i \tilde{\alpha}_j$
$ \begin{array}{c} \mathcal{A}_{V,0} \\ \mathcal{A}_{V,t} \\ \mathcal{A}_{V,t} \end{array} $	5.41 - 5.72	0.48 0.54 0.30	$-1.0 \\ -1.7 \\ 0.20$	LCSR and Lattice LCSR and Lattice LCSR and Lattice	$\begin{array}{c} 5.15 \times 10^{-3} \\ 0.904 \\ 7.17 \times 10^{-5} \end{array}$	$\begin{array}{c} 4.04\times 10^{-3}\\ 0.142\\ 5.32\times 10^{-2}\end{array}$
$ \begin{array}{c} \mathcal{A}_{V,0} \\ \mathcal{A}_{V,t} \\ \mathcal{A}_{V,t} \\ \mathcal{A}_{T,0} \end{array} $	5.41 - 5.72 5.41	0.48 0.52 0.50 0.28	$-1.1 \\ -1.4 \\ -1.4 \\ 0.35$	LCSR LCSR LCSR LCSR	$\begin{array}{c} 8.15\times 10^{-3}\\ 2.27\times 10^{-3}\\ 0.940\\ 0.128\end{array}$	$\begin{array}{c} 3.06\times 10^{-3}\\ 9.55\times 10^{-2}\\ 6.51\times 10^{-3}\\ 3.15\times 10^{-2}\end{array}$

 $B \rightarrow K$: Fit of SSE parameterisation to LCSR or LCSR/Lattice results, for $A_{V,0}$ (X = 1), $A_{V,t}$ (X = 3) and $A_{T,0}$ (X = 1) The fit of $B \rightarrow K$ FFs to LCSR data alone gives the covariances matrices:

$$\begin{array}{cccc} \mathsf{SE} & \mathsf{SSE} \\ \mathcal{A}_{V,0} & \left(\begin{array}{cccc} 1.56 \times 10^{-5} & -1.04 \times 10^{-4} \\ -1.04 \times 10^{-4} & 9.59 \times 10^{-4} \end{array}\right) & \left(\begin{array}{cccc} 4.39 \times 10^{-3} & -2.91 \times 10^{-2} \\ -2.91 \times 10^{-2} & 0.266 \end{array}\right) \\ \mathcal{A}_{V,t}^{\text{no res.}} & \left(\begin{array}{cccc} 1.19 \times 10^{-4} & -7.87 \times 10^{-4} \\ -7.87 \times 10^{-4} & 6.98 \times 10^{-3} \end{array}\right) & \left(\begin{array}{cccc} 7.17 \times 10^{-3} & -4.75 \times 10^{-2} \\ -4.75 \times 10^{-2} & 0.423 \end{array}\right) \\ \mathcal{A}_{V,t} & \left(\begin{array}{cccc} 6.27 \times 10^{-6} & -2.72 \times 10^{-5} \\ -2.72 \times 10^{-5} & 2.19 \times 10^{-4} \end{array}\right) & \left(\begin{array}{cccc} 2.61 \times 10^{-3} & -1.08 \times 10^{-2} \\ -1.08 \times 10^{-2} & 8.86 \times 10^{-2} \end{array}\right) \\ \mathcal{A}_{T,0} & \left(\begin{array}{cccc} 2.1 \times 10^{-5} & -6.55 \times 10^{-5} \\ -6.55 \times 10^{-5} & 5.37 \times 10^{-4} \end{array}\right) & \left(\begin{array}{cccc} 7.63 \times 10^{-4} & 6.3 \times 10^{-4} \\ 6.3 \times 10^{-4} & 8.32 \times 10^{-3} \end{array}\right) \end{array}$$

For the fit of scalar/vector $B \rightarrow K$ FFs to LCSR and Lattice data, we obtain the covariance matrices:

 $\begin{array}{ccc} \mathsf{SE} & \mathsf{SSE} \\ \mathcal{A}_{V,0} & \begin{pmatrix} 1.48 \times 10^{-5} & -9.81 \times 10^{-5} \\ -9.81 \times 10^{-5} & 8.76 \times 10^{-4} \end{pmatrix} & \begin{pmatrix} 6.26 \times 10^{-3} & -4.15 \times 10^{-2} \\ -4.15 \times 10^{-2} & 0.382 \end{pmatrix} \\ \mathcal{A}_{V,t}^{\text{no res.}} & \begin{pmatrix} 4.82 \times 10^{-5} & -2.03 \times 10^{-4} \\ -2.03 \times 10^{-4} & 1.6 \times 10^{-3} \end{pmatrix} & \begin{pmatrix} 3.08 \times 10^{-3} & -1.39 \times 10^{-2} \\ -1.39 \times 10^{-2} & 0.11 \end{pmatrix} \\ \mathcal{A}_{V,t} & \begin{pmatrix} 6.21 \times 10^{-5} & -4.11 \times 10^{-4} \\ -4.11 \times 10^{-4} & 3.75 \times 10^{-3} \end{pmatrix} & \begin{pmatrix} 3.45 \times 10^{-3} & -2.37 \times 10^{-2} \\ -2.37 \times 10^{-2} & 0.261 \end{pmatrix} \end{array}$

- LO and NLO diagrams contributing to correlation function (crossed circle indicates insertion of appropriate current)
- Expansion about $q^2 \rightarrow 0$ simplifies calculation
- Use tensor reduction and recurrence relations to express loop integrals in terms of master integrals

- Diagrams involving quark condensate, indicated by two solid dots
- Calculation follows Jamin and Münz⁹

⁹M. Jamin and M. Munz, Z. Phys. C 60, 569 (1993) [arXiv:hep-ph/9208201]

- Diagrams involving gluon condensate, indicated by two solid dots
- Calculation uses fixed-point gauge technique⁹

⁹see L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept. **127**, 1 (1985)

- Diagrams involving mixed condensate, indicated by three solid dots
- Calculation follows Jamin and Münz⁹

⁹M. Jamin and M. Munz, Z. Phys. C 60, 569 (1993) [arXiv:hep-ph/9208201]

Results: $\mathcal{A}_{V,0}$ for $B \to K$, effect of a_2

Fit of SE to LCSR or LCSR/Lattice, for a_2 in range [-0.9, +0.9] (thin lines). Thick, dark lines show $a_2 = \pm 0.25$. On right we show again results for truncated fit after a_1 .