Imperial College London

Experimental aspects of $B^0 \rightarrow K^* \mu^+ \mu^-$ Ulrik Egede

Rare b-Decays @ Low Recoil (bsll2011) DESY, 14-16 June 2011

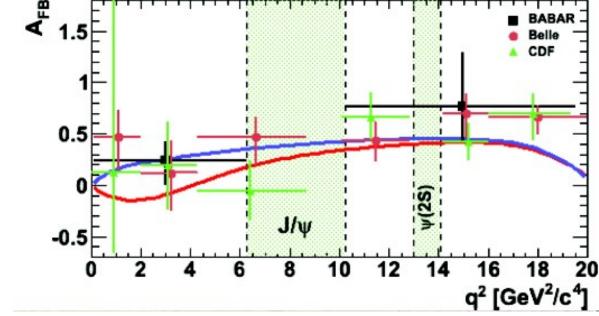
Outline

Experimental status of $\mathsf{B}^{0}\to\mathsf{K}^{(\star)}\mathsf{I}^{\scriptscriptstyle +}\mathsf{I}^{\scriptscriptstyle -}$ decays

Observables and how to get hold of them

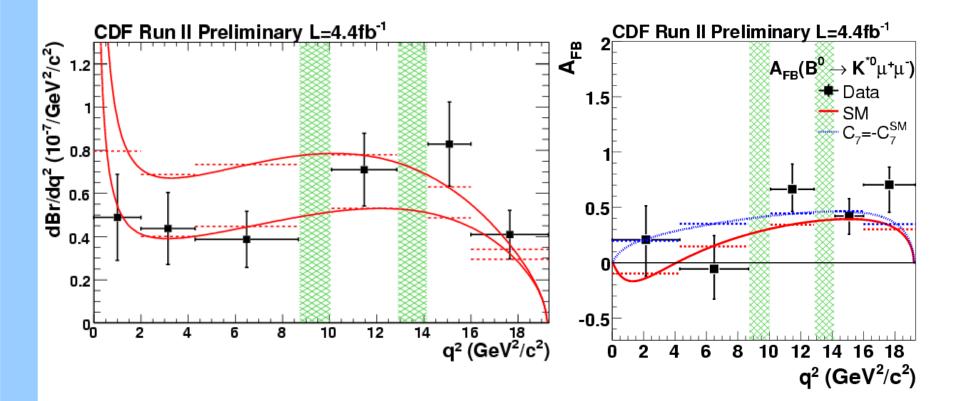
The low recoil region

Binning


Fitting

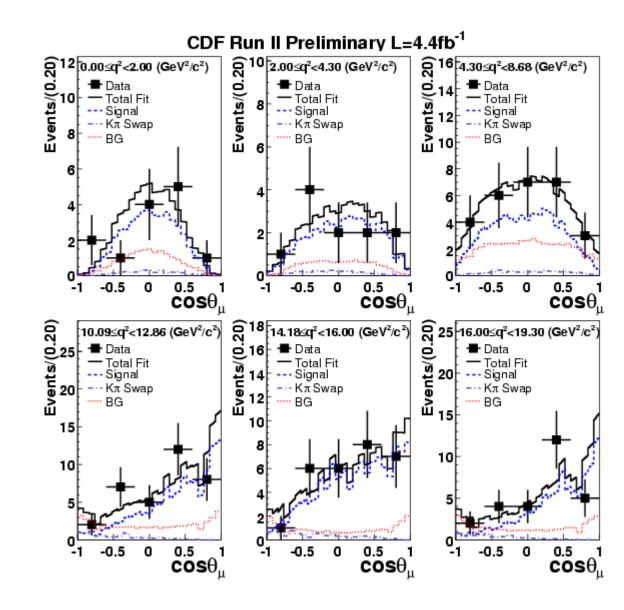
The past

Belle and BaBar collected data at the Y(4S) resonance


- 711 fb⁻¹, and 433 fb⁻¹ collected respectively
- Looked at $B \rightarrow K^{(*)}I^+I^-$ in 10 exclusive final states
 - BaBar has around 100 events and Belle around 250
 - Both experiments can make modest improvements with current data

The present

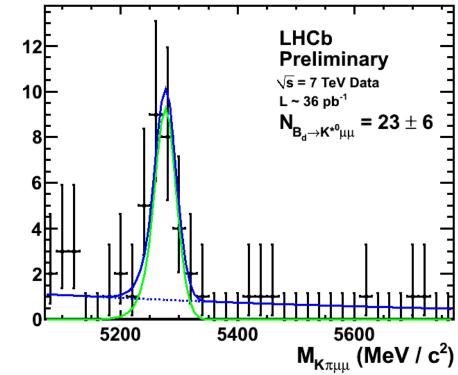
CDF presented results in 2010 based on 4.4 fb-1


This gives about 100 events in total

The present

Example of fits to θ_{I} distributions

A factor 2 more to come from data on tape

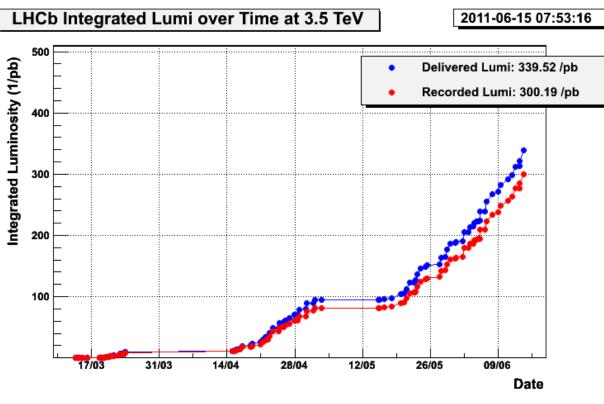

Status

The present

From 36 pb⁻¹ of data taken in 2010, LHCb, demonstrated they can see decay Events / (20 MeV / c²)

Despite a very rare decay, almost no background

Sensitivity illustrated by latest result on Lepton Flavour Violating decays from 2010 data $BF(B^+ \rightarrow K^- \mu^+ \mu^+) < 4.3 \ 10^{-8} @ 90\% \ CL$ $BF(B^+ \rightarrow \pi^- \mu^+ \mu^+) < 4.5 \ 10^{-8} @ 90\% \ CL$

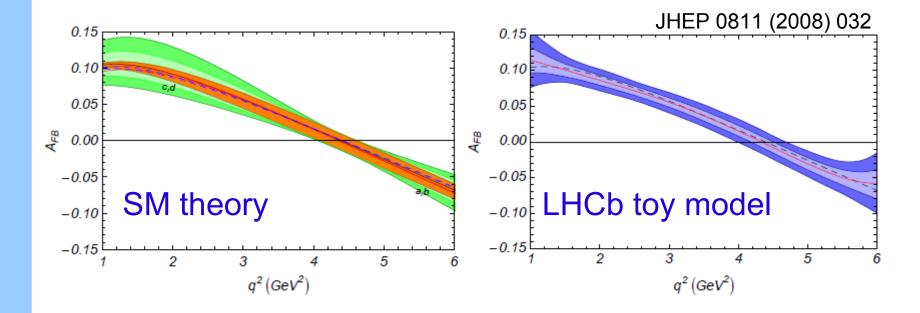

The near future

During summer LHCb should have results based on hundreds of pb⁻¹

Full year should give 1 fb⁻¹

Extrapolations dangerous (when soon to be confronted) but O(600) events within reach from 2011

Will dominate results


2011 data taken so far

The future

With LHC going to full energy the B-cross section will double.

Several years of running will make LHCb reach towards 10 fb⁻¹

Precise measurement of A_{FB} zero point possible

The far future

LHCb upgrade

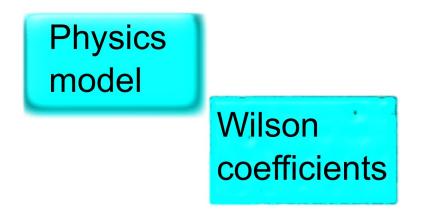
With 50 - 100 fb-1 and yield taken from arXiv 0912.4179 we can expect O(500k) events.

Super B-factories

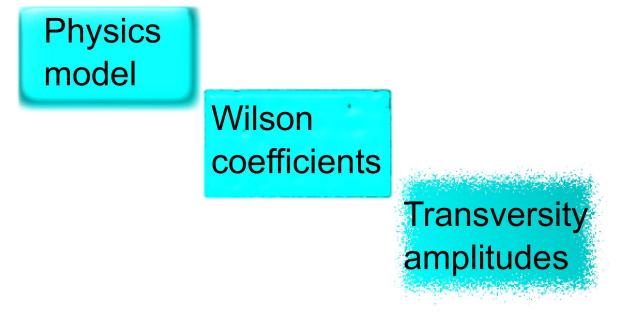
O(20k) events expected (G. Eigen, Elba, May 2011) with 75 ab⁻¹

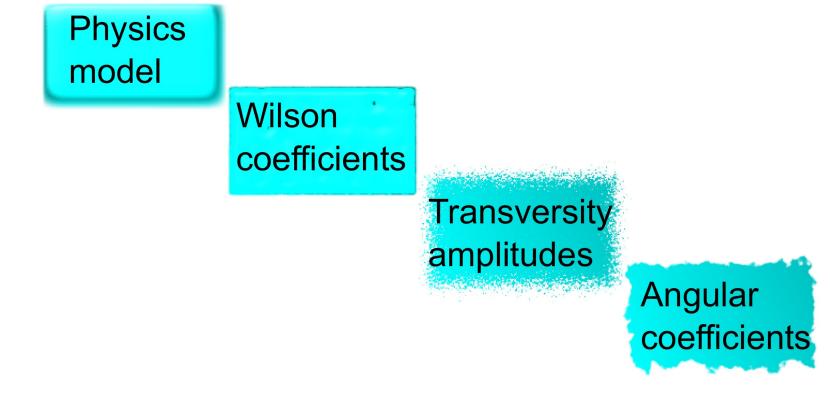
Also prospect for (semi)-inclusive analysis of $B \rightarrow XI^+I^-$

What is the problem


We are dealing with an exclusive decay Multiple problems coming from QCD Form factor calculation This leaves us with $\Lambda_{\rm QCD}/m_{\rm b}$ corrections Mass of charm quark introduce uncertainties Charm loops

We start out with a shiny New Physics model


Physics model

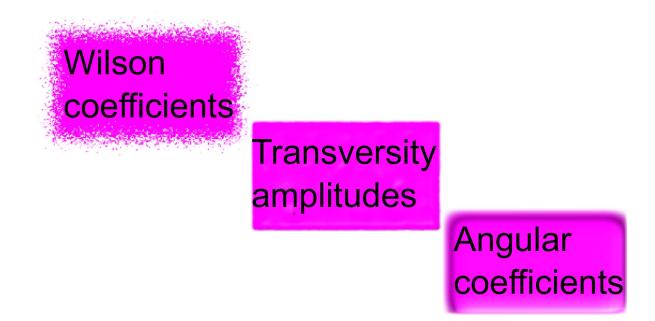

Then calculate the Wilson coefficients

To get to the transversity amplitudes involves form factors and unknown $\Lambda/m_{\rm b}$ corrections

Finally getting to the angular coefficients involves a loss of information

Now from the experimental side we start with an all shiny set of angular coefficients

15-17 Jun 2011


Getting to the transversity amplitudes is not a well defined operation due to symmetries

Transversity amplitudes

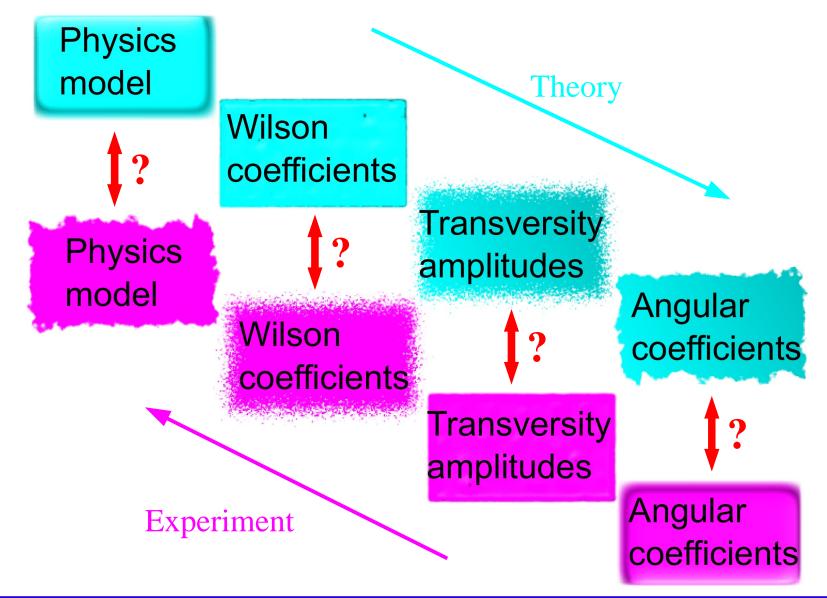
Angular coefficients

Getting to the Wilson coefficients introduce the form factor uncertainties

Wilson

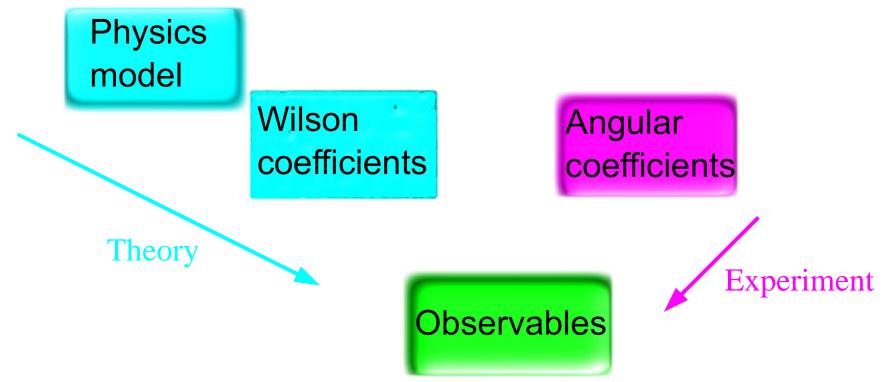
coefficients

Finally extracting a specific physics model loses model independence.


Physics model

Transversity amplitudes

> Angular coefficients


How to compare?

15-17 Jun 2011

New observables

Create observables which are made with both theory and experiment in mind

Constructing observables

New observables are constructed to satisfy multiple criteria

- Sensitivity to a given set of New Physics scenarios
- Form factors should cancel at leading order
- Λ/m_{b} corrections under control
- Respect symmetries of decay
- Have good experimental statistical sensitivity
- Minimise systematics in experimental measurement

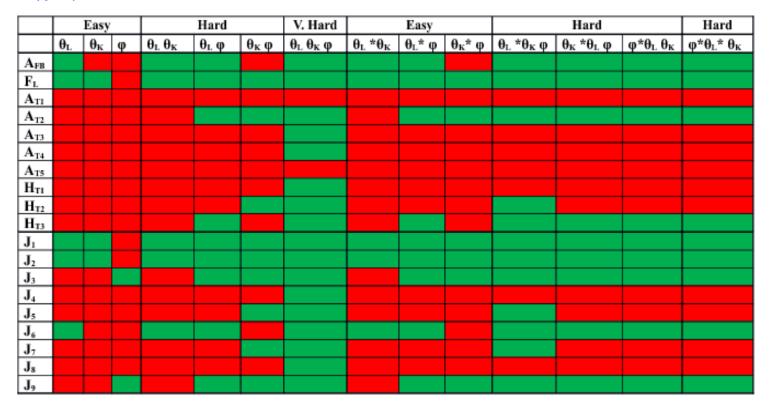
Angular distribution

The full angular distribution is given as

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{32\pi} J(q^2, \theta_l, \theta_K, \phi), \qquad (2.1)$$

The dependence on the three angles can be made more explicit:

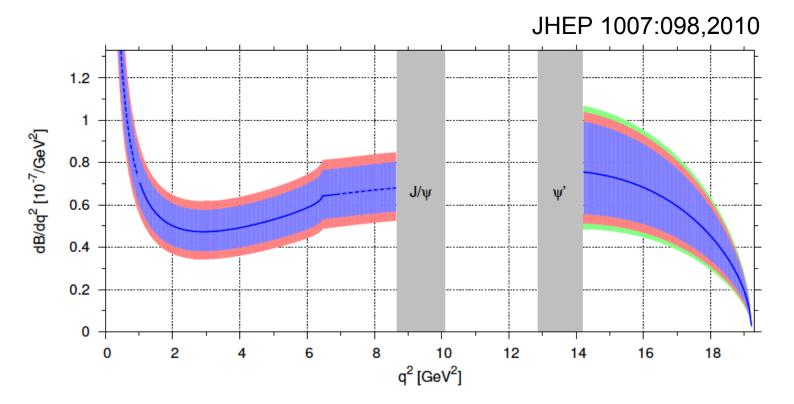
 $J(q^2, \theta_l, \theta_K, \phi) =$


 $= J_{1s}\sin^2\theta_K + J_{1c}\cos^2\theta_K + (J_{2s}\sin^2\theta_K + J_{2c}\cos^2\theta_K)\cos 2\theta_l + J_3\sin^2\theta_K\sin^2\theta_l\cos 2\phi$ $+ J_4\sin 2\theta_K\sin 2\theta_l\cos\phi + J_5\sin 2\theta_K\sin\theta_l\cos\phi + (J_{6s}\sin^2\theta_K + J_{6c}\cos^2\theta_K)\cos\theta_l$ $+ J_7\sin 2\theta_K\sin\theta_l\sin\phi + J_8\sin 2\theta_K\sin 2\theta_l\sin\phi + J_9\sin^2\theta_K\sin^2\theta_l\sin 2\phi.$ (2.2)

With 8 (out of the 12) J_i independent in the limit of massless leptons.

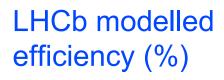
How to measure the observables

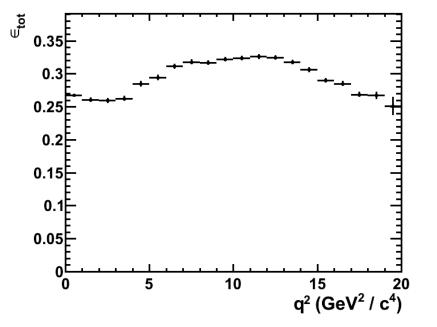
Table shows which projections are required for measuring each observable


- $\Theta_{\kappa} * \theta_{\mu}$ means simultaneous fit of two 1D projections
- $\Theta_{\kappa} \theta_{I}$ means fit to 2D projection

15-17 Jun 2011

The statistics in the low recoil region are limited for two reasons


The phase-space becomes small



15-17 Jun 2011

The statistics in the low recoil region are limited for two reasons

- The phase-space becomes small
- The efficiency starts to go down as endpoint is reached

The "usual" observables will be measured in the low recoil region

The differential branching fraction as function of q

 A_{FB} and F_{I} from θ_{K} and θ_{I} projections

High q² observables from JHEP 1007:098,2010

$$H_T^{(1)} = \frac{\sqrt{2}I_4}{\sqrt{-I_2^c (2I_2^s - I_3)}} = 1$$
$$H_T^{(2)} = \frac{I_5}{\sqrt{-2I_2^c (2I_2^s + I_3)}} = 2\frac{\rho_2}{\rho_1}, \qquad H_T^{(3)} = \frac{I_6}{2\sqrt{(2I_2^s)^2 - I_3^2}} = 2\frac{\rho_2}{\rho_1}$$

The "usual" observables will be measured in the low recoil region

The differential branching fraction as function of q

 A_{FB} and F_{L} from θ_{K} and θ_{I} projections

Will Reece have made some preliminary estimates of precision in q²>14 GeV² region

Observable	$2 \mathrm{fb}^{-1}$	$1{\rm fb}^{-1}$	$0.5{\rm fb}^{-1}$	$LHCb \ 2 fb^{-1}$	Ref.
My (unofficial) high-q ² estimates:				Offical low-q ²	
A _{FB} :	±0.01			±0.02	
F _L :	±0.01			±0.016	
A _T ⁽²⁾ :	±0.2			±0.42	
A _{FB} : F _L : A _T ⁽²⁾ : H _T ⁽³⁾ :	±0.1				
Based on CERN-LHCB-2007-057					

Binning

The default choice of LHCb is to use the same q² binning at Belle

<2.00, 2.00-4.30, 4.30-8.68, 10.09-12.86, 14.18-16.00, >16.00

and in addition the overlapping bin

1.00 - 6.00 GeV²

Is this a reasonable choice?

Some places seems to have the low-recoil limit at 15 GeV^2

Fitting

When moving to a fit in all kinematic variables, some choices have to be made.

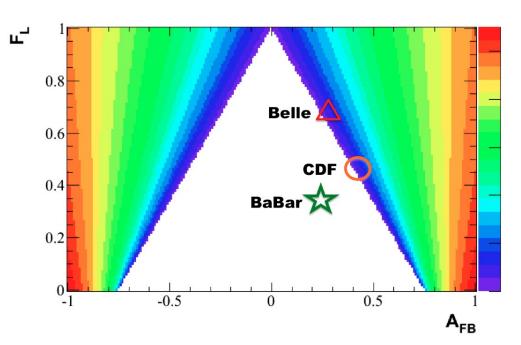
Fit for 8 independent spin amplitudes

- Concept proven, see JHEP 0811 (2008) 032, JHEP 1010 (2010) 056
- Bins in q² doesn't work, require a parametrised dependence of amplitudes with q²
- Result is always physical as all values of amplitudes allowed
- Fit for 8 independent angular J_i coefficients
 - Allows for binned or parametrised q² fit
 - Approach failed when tried a few years ago!
 - Tricky to make sure probability density function stays positive during fit

T. Blake

Fitting

Obtaining un-physical results in fit for A_{FB} and F_{L}


$$\frac{1}{\Gamma} \frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}q^{2}} = \frac{9}{16} \left[\frac{3}{4} (1 - F_{L})(1 - \cos^{2}\theta_{K}) + F_{L}\cos^{2}\theta_{K} \right]$$

$$(2\cos^{2}\theta_{\ell} - 1) \left(\frac{1}{4} (1 - F_{L})(1 - \cos^{2}\theta_{K}) - F_{L}\cos^{2}\theta_{K} \right)$$

$$\frac{4}{3}A_{FB}(1 - \cos^{2}\theta_{K})\cos\theta_{\ell}$$

Coloured region is where value results in negative PDF.

Central value for CDF and BELLE are not possible!

Fitting

Both fit for amplitudes and fit for coefficients contain in principle the same amount of information

- Observables are in both cases highly non-linear functions of fit variables.
- Simply giving central values and (linear) correlation matrix could give misleading results.

Conclusion

- The $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decay is on the brink of moving into precision physics
- Over the next few years increasingly complex analyses will be performed
- I did not (explicitly) discuss isopin asymmetries, higher K resonances, $B \to \pi/\rho \ \mu\mu$, B_s or Λ_b decays which all have prospects for updated and new results
- Interpretation of results will require careful collaboration between experimentalists and theorists