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hadronic physics 
as “brown muck”

B
b as static 

color source

HQET (NRQCD) to the rescue!
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Foldy-Wouthuyesen-Tani transformation

Generates operators which appear at tree-level

L = Ψ̄(iγµDµ − m)Ψ

Decouple quark and anti-quark degrees-of-freedom in 1/m

Ψ = exp

(
iγjDj

2m

)
Ψ(1)

Further field redefinitions remove terms order-by-order which do not 
commute with γ0

L = Ψ̄(1)(iγ0D0 − m)Ψ(1) +
∑∑∑

n=1

1
mn

Ψ̄(1)O(1)nΨ(1)



Decoupling

L = ψ†
[
iD0 +

"D2

2m
+

g

2m
"σ · "B

]
ψ

+ ξ†
[
iD0 −

"D2

2m
− g

2m
"σ · "B

]
ξ + O(1/m2)

Note we implicitly worked in a frame where the heavy quark is slow

Ψ̄(k) =
(
ψ†, −ξ†) eimtγ0Ψ(k) = e−imtγ0

(
ψ
ξ

)



Lattice QCD in a Nutshell

Partial quenching =
 different mass for valence         than for seaQ−1

det Q

Probability weight

=

1

Z

∫
[dU ] Θ[U ] det Q[U ] e−Sg[U ]

Gluonic expectation values

〈Θ〉 =

1

Z

∫
[dψ][dψ̄][dU ]Θ[U ] e−Sg[U ]−ψ̄Q[U ]ψ

Fermionic expectation values

〈ψ̄Γψ〉 =

∫

[dU ]
δ

δζ̄
Γ

δ

δζ
e−ζ̄Q−1[U ]ζ det Q[U ]e−Sg[U ]

∣

∣

∣

∣

ζ, ζ̄ → 0

Determinant in probability weight difficult
1) Requires nonlocal updating;  2) Matrix becomes singular



NRQCD Discretization

✤ Euclidean spacetime

✤ Replace derivatives by difference operators

✤ Lattice acts as regulator of the EFT

✤ Require 

✤ Errors are reducible, as in continuum EFTs

✤ Compare w/ LHQET: higher dimension operators 
not included in lattice action

✤ Can study multi-b systems

✤ NRQCD has better signal-to-noise vs. static action

1/a ! mb
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Fig. 4. (Colour on-line) Physical form factors for D and Ds

decays as a function of q2 from this work and other quenched
and dynamical studies. The solid black lines are the form fac-
tors obtained from the coefficient extrapolation method where
eq. (8) has been truncated at O(m−1

H ), while the dashed black
lines indicate the error on the form factors. The range of v · p
values achieved in our simulations approximately corresponds
to −1.5 GeV2 ! q2 ! 2 GeV2. The dashed red lines are the
results for the coefficient extrapolation method from ref. [23].
The open red squares and circles are their results obtained
using the UKQCD method.

four times shorter than the spatial extent of our lattice.
Systematic infrared effects can thus be quantified around
1–2%. This is comparable with the estimate of ref. [45], in
which, using chiral perturbation theory [50,51], the finite-
volume effects for their calculation, with 2 + 1 flavors of
staggered quarks and values of mP L between 4 and 6, are
estimated to be less than 1%.
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Fig. 5. (Colour on-line) The same as in fig. 4, but for B and
Bs decays; in this case, the v · p values of our simulations are
in the range 14 GeV2 ! q2 ! 23 GeV2. For B → π, the dashed
and solid magenta lines in the range q2 = 0–14 GeV2 indicate
the prediction from light-cone sum rules [16,17].

Renormalization coefficients: the uncertainty associ-
ated with the ZV coefficient, as determined in ref. [39]
for the quenched case, is about 0.5%. The same article
also quotes a 1% uncertainty for bV , which induces an er-
ror about 1% for decays of D mesons and about 3% for
B mesons. Concerning cV , a look at the results displayed
in fig. 2 of ref. [40] would suggest that the relative error
in the region of interest (g2

0 ! 0.91) may be quite large,
around 30%; however, it should be noted that cV itself

from Al-Haydari, et al. (QCDSF) EPJ A43 (2010)
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Renormalization coefficients: the uncertainty associ-
ated with the ZV coefficient, as determined in ref. [39]
for the quenched case, is about 0.5%. The same article
also quotes a 1% uncertainty for bV , which induces an er-
ror about 1% for decays of D mesons and about 3% for
B mesons. Concerning cV , a look at the results displayed
in fig. 2 of ref. [40] would suggest that the relative error
in the region of interest (g2

0 ! 0.91) may be quite large,
around 30%; however, it should be noted that cV itself
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four times shorter than the spatial extent of our lattice.
Systematic infrared effects can thus be quantified around
1–2%. This is comparable with the estimate of ref. [45], in
which, using chiral perturbation theory [50,51], the finite-
volume effects for their calculation, with 2 + 1 flavors of
staggered quarks and values of mP L between 4 and 6, are
estimated to be less than 1%.
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Fig. 5. (Colour on-line) The same as in fig. 4, but for B and
Bs decays; in this case, the v · p values of our simulations are
in the range 14 GeV2 ! q2 ! 23 GeV2. For B → π, the dashed
and solid magenta lines in the range q2 = 0–14 GeV2 indicate
the prediction from light-cone sum rules [16,17].

Renormalization coefficients: the uncertainty associ-
ated with the ZV coefficient, as determined in ref. [39]
for the quenched case, is about 0.5%. The same article
also quotes a 1% uncertainty for bV , which induces an er-
ror about 1% for decays of D mesons and about 3% for
B mesons. Concerning cV , a look at the results displayed
in fig. 2 of ref. [40] would suggest that the relative error
in the region of interest (g2

0 ! 0.91) may be quite large,
around 30%; however, it should be noted that cV itself

SU(3) symmetry
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Systematic infrared effects can thus be quantified around
1–2%. This is comparable with the estimate of ref. [45], in
which, using chiral perturbation theory [50,51], the finite-
volume effects for their calculation, with 2 + 1 flavors of
staggered quarks and values of mP L between 4 and 6, are
estimated to be less than 1%.
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3. Results

In principle one could compute the form factors for any value of q2 from lattice QCD.
However, states with high spatial momentum are very noisy and thus difficult to measure
on the lattice. Thus we are restricted to the high q2 end of the range. In addition, the
procedures we have introduced to control the extrapolations, separating the q2 from the
quark mass dependence, have further restricted the range of q2 away from q2

max, in the
range

12.7GeV2 ≤ q2 ≤ 18.2GeV2 . (3.1)

Moreover, the relatively small number of momentum channels for which the form factors are
extracted, six for A1, five for A0 and A2, and four for V , coupled with the interpolation at
fixed q2 imply by naive counting of degrees of freedom that we have only four independent
data for A1 and worse, two independent data for V . Fitting the functional form of the q2

dependence of the form factors is thus rather hard. However, we are free to evaluate the
form factors, and thus the differential decay rate, at any value of q2 we choose without
introducing any extra model dependence as long as it is in the range of allowed q2. In
particular we can determine a partially integrated decay rate over this range.

Figure 4 shows the four form factors on both lattices. In this case we have chosen
nine values of q2. The form factor A1 which dominates at q2

max is well determined and
is in good agreement for both lattice spacings. The other form factors, which are phase-
space suppressed, have a much noisier signal, especially for the coarser lattice. This made
the extrapolations very difficult to control. For the coarse lattice only we introduced
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Lattice data

a(fm) amsea Volume Nconf × Nsrc amval

coarse ∼0.12 0.007/0.05 203 × 64 2109× 8 0.007/0.04
0.02/0.05 203 × 64 2052× 8 0.02/0.04

fine ∼0.09 0.0062/0.031 283 × 96 1910× 8 0.0062/0.031

MILC lattices (2+1 asqtad staggered)

(px , py , pz) = (0, 0, 0).
(q̃,0,0), (0,q̃,0), (0,0,q̃), where q̃=1 or 2.
(1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1).
(1,1,1), (1,1,-1), (1,-1,1), (1,-1,-1).

High statistics

Light meson momenta (units of 2π/L)

So far, only v=0 NRQCD used (B at rest).  Larger v (mNRQCD) next.

Leading order (HQET) current presently used.  
1/mb current matrix elements computed, analysis in progress

Many Source/Sink separations (16 coarse, 22 fine)

mπ (MeV)
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~460
~320

p2/(2π/L)2
0

1 or 4
2
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operator, can be extracted from the combination of the Euclidean 3-point function

CFJB(p′, p, x0, y0, z0) =
∑

y

∑

z

〈
ΦF (x) J(y) Φ†

B(z)
〉

e−ip′·(x−y)e−ip·(y−z) (8.22)

with the Euclidean two-point functions

CBB(p, x0, y0) =
∑

x

〈
ΦB(x) Φ†

B(y)
〉

e−ip·(x−y), (8.23)

CFF (p′, x0, y0) =
∑

x

〈
ΦF (x) Φ†

F (y)
〉

e−ip′·(x−y). (8.24)

Here, ΦB ∼ q̄′γ̂5b and ΦF ∼ q̄′γ̂5q (F = P ), ΦF ∼ q̄′γ̂jq (F = V ).

In the following we write τ = |x0− y0| and T = |x0− z0|. As in Sec. 2.2, one can show

by inserting complete sets of states that at large τ , T , and T − τ , the correlation functions

become

CFJB(p′, p, τ, T ) → A(FJB)e−EF τ e−EB(T−τ), (8.25)

CFF (p, τ) → A(FF ) e−EF τ , (8.26)

CBB(p, τ) → A(BB) e−EBτ , (8.27)

where

A(FJB) =






√
ZV

2EV

√
ZB

2EB

∑

s

εj(p′, s) 〈V
(
p′, ε(p′, s)

)
| J |B(p)〉, F = V,

√
ZP

2EP

√
ZB

2EB
〈P

(
p′

)
| J |B(p)〉, F = P

(8.28)

A(BB) =
ZB

2EB
, (8.29)

A(FF ) =






∑

s

ZV

2EV
ε∗j (p

′, s)εj(p′, s), F = V (no sum over j),

ZP

2EP
, F = P.

(8.30)

Thus, the matrix elements 〈P (p′)|J |B(p)〉 and
∑

s εj(p′, s) 〈V (p′, ε(p′, s)) |J |B(p)〉 can be

extracted from (8.28), once the factors ZB, ZF have been extracted from the two-point

functions (the energies EB, EF can be obtained from either the two-point or three-point

functions). Note that in Eqs. (8.28) and (8.29), EB denotes the full, physical energy of the

B meson; this is not equal to the energy obtained from the exponential decay in (8.25) or

(8.27) when an effective theory like mNRQCD is used for the b quark.

In the next sections I discuss briefly how the form factors can be extracted from the

matrix elements. I will only consider the case where all momenta point in x1-direction.
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Figure 8.23: Contractions for the three-point functions with point sources.

8.8.3 Heavy-light meson three-point functions

In terms of the standard Dirac propagators, the point-source three-point function at τ =

|x0 − y0|, T = |x0 − z0| is given by

CFJB(τ, T, p, p′) =
∑

y,z

e−ip′·xe−i(p−p′)·yeip·z Tr
[
ΓF Gq(x, y) ΓJ Gb(y, z) γ̂5 Gq′(z, x)

]
,

(8.72)

where ΓF = γ̂5 for F = P and ΓF = γ̂j for F = V . See Fig. 8.23 for a diagram showing

the contractions. In (8.72) we used the simple form of the heavy-light current J = q̄ ΓJb.

When replacing the b quark propagator by the lattice mNRQCD propagator, the current

has to be replaced by the lattice current derived in Sec. 8.5. It is convenient to compute

and fit the three-point functions for the various terms in the lattice current individually.

Inserting the lattice current, the three-point function becomes

CFJB(τ, T, k, p′) =
1
γ

∑

y,z

e−ip′·xe−i(k−p′)·yeik·z Tr

[
G†

χq
(y, x) F (x) Ω†(y) γ̂5

× J

(
Gψv(y, z) 0

0 0

)
S(Λ) γ̂5 Ω(z) Gχq′ (z, x)

]
(8.73)

(for x0 > y0 > z0). In (8.73), we have F (x) = 1 for a pseudoscalar meson in the final

state and F (x) = (−1)xj γ̂j for a vector meson in the final state. The symbol J in (8.73)

denotes the gamma matrix / derivative operator content of the heavy-light current:

J ∈
{

ΓS+(Λ), ΓS−(Λ), Γ (−iγ̂0v + iγ̂ ± iv/γ) · ∆(±)S+(Λ)
}

. (8.74)

The three-point function (8.73) can be computed by using the spectator-quark (q′) prop-

agator as a source for the heavy-quark propagator, so that only the sum over y remains
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(8.30)

Thus, the matrix elements 〈P (p′)|J |B(p)〉 and
∑

s εj(p′, s) 〈V (p′, ε(p′, s)) |J |B(p)〉 can be

extracted from (8.28), once the factors ZB, ZF have been extracted from the two-point

functions (the energies EB, EF can be obtained from either the two-point or three-point

functions). Note that in Eqs. (8.28) and (8.29), EB denotes the full, physical energy of the

B meson; this is not equal to the energy obtained from the exponential decay in (8.25) or

(8.27) when an effective theory like mNRQCD is used for the b quark.

In the next sections I discuss briefly how the form factors can be extracted from the

matrix elements. I will only consider the case where all momenta point in x1-direction.
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Figure 8.23: Contractions for the three-point functions with point sources.

8.8.3 Heavy-light meson three-point functions

In terms of the standard Dirac propagators, the point-source three-point function at τ =

|x0 − y0|, T = |x0 − z0| is given by

CFJB(τ, T, p, p′) =
∑

y,z

e−ip′·xe−i(p−p′)·yeip·z Tr
[
ΓF Gq(x, y) ΓJ Gb(y, z) γ̂5 Gq′(z, x)

]
,

(8.72)

where ΓF = γ̂5 for F = P and ΓF = γ̂j for F = V . See Fig. 8.23 for a diagram showing

the contractions. In (8.72) we used the simple form of the heavy-light current J = q̄ ΓJb.

When replacing the b quark propagator by the lattice mNRQCD propagator, the current

has to be replaced by the lattice current derived in Sec. 8.5. It is convenient to compute

and fit the three-point functions for the various terms in the lattice current individually.

Inserting the lattice current, the three-point function becomes

CFJB(τ, T, k, p′) =
1
γ

∑

y,z

e−ip′·xe−i(k−p′)·yeik·z Tr

[
G†

χq
(y, x) F (x) Ω†(y) γ̂5

× J

(
Gψv(y, z) 0

0 0

)
S(Λ) γ̂5 Ω(z) Gχq′ (z, x)

]
(8.73)

(for x0 > y0 > z0). In (8.73), we have F (x) = 1 for a pseudoscalar meson in the final

state and F (x) = (−1)xj γ̂j for a vector meson in the final state. The symbol J in (8.73)

denotes the gamma matrix / derivative operator content of the heavy-light current:

J ∈
{

ΓS+(Λ), ΓS−(Λ), Γ (−iγ̂0v + iγ̂ ± iv/γ) · ∆(±)S+(Λ)
}

. (8.74)

The three-point function (8.73) can be computed by using the spectator-quark (q′) prop-

agator as a source for the heavy-quark propagator, so that only the sum over y remains
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Excited state contamination

✤ Bayesian fits to multi-exponential models

✦ Difficult to fit all data (esp. all T values)

✤ Frequentist fits with “cuts”

✦ Fit with 500 choices for tcut’s, find top few fits

✦ Include uncertainty by varying tcut’s bootstrap-by-
bootstrap

✤ Useful to have separate analyses



Form factors of V, A matrix elements

✤ So far, we use p=0

✤ V straightforward to extract

✤ A1 straightforward to extract when 1 component of p’ is 0

✤ Linear combinations then yield A0 and A2

8.3. General definition of semileptonic form factors 129

found to be suppressed relative to O7 by a factor of (C8/C7)ΛQCD/MB ≈ 0.05. See also

[177] for a discussion of O8 for B → K∗!+!− decays.

Finally, note that the K∗ meson decays through the strong interaction into a pseu-

doscalar kaon and a pion. The width of the K∗ is about 50 MeV [73]. For the unphysically

large u- and d-quark masses used in the initial lattice calculations, the K∗ is stable. How-

ever, extrapolations to the physical quark masses will be complicated by threshold effects.

8.3 General definition of semileptonic form factors

As discussed in the previous section, the short-distance contributions for B → K∗γ and

B → K(∗)!! decays are due to the operators O7, O9 and O10. The hadronic matrix

elements of the bilinear heavy-light quark currents contained in these operators can be

parametrised by Lorentz-invariant form factors as follows (see e.g. [178]):

〈P (p′)|q̄γ̂µb|B(p)〉 = f+(q2)
[
pµ + p′µ − M2

B −M2
P

q2
qµ

]

+f0(q2)
M2

B −M2
P

q2
qµ, (8.16)

qν〈P (p′)|q̄σµνb|B(p)〉 =
ifT (q2)

MB + MP

[
q2(pµ + p′µ)− (M2

B −m2
P )qµ

]
, (8.17)

〈V (p′, ε)|q̄γ̂µb|B(p)〉 =
2iV (q2)

MB + MV
εµνρσε∗ν p′ρpσ, (8.18)

〈V (p′, ε)|q̄γ̂µγ̂5b|B(p)〉 = 2MV A0(q2)
ε∗ · q

q2
qµ

+(MB + MV ) A1(q2)
[
ε∗µ − ε∗ · q

q2
qµ

]

−A2(q2)
ε∗ · q

MB + MV

[
pµ + p′µ − M2

B −M2
V

q2
qµ

]
, (8.19)

qν〈V (p′, ε)|q̄σµνb|B(p)〉 = 4 T1(q2)εµρκσε∗ρpκp′σ, (8.20)

qν〈V (p′, ε)|q̄σµν γ̂5b|B(p)〉 = 2iT2(q2)
[
ε∗µ(M2

B −M2
V )− (ε∗ · q)(p + p′)µ

]

+ 2iT3(q2)(ε∗ · q)
[
qµ −

q2

M2
B −M2

V

(p + p′)µ

]
. (8.21)

A derivation of (8.20) and (8.21) is given in Sec. B.1.

8.4 Extraction of form factors from correlation functions

The matrix element 〈F (p′)|J |B(p)〉, where F denotes the final pseudoscalar (P ) or vector

(V ) meson, and J ∼ q̄ ΓJ b is the heavy-light quark current in the effective electroweak
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Extrapolation of sum rule f.f.
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FIG. 9: The B → K∗ form factors V,A1 and A2 from [32].

distance couplings ρi using the observables
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U6
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f0
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√
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=

√
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U4
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Appendix C: The Form Factors

The hadronic matrix elements of a B meson with 4-momentum p decaying into a vector meson can

be parametrized as [32]:

〈V (k, ε)| q̄γµb |B(p)〉 = 2V (q2)

mB +mV
εµρστ ε

∗ρpσkτ , (C1)

〈V (k, ε)| q̄γµγ5b |B(p)〉 = iε∗ρ
[
2mV A0(q

2)
qµqρ
q2

+ (mB +mV )A1(q
2)

(
gµρ −

qµqρ
q2

)

− A2(q
2)

qρ
mB +mV

(
(p+ k)µ − m2

B −m2
V

q2
(p− k)µ

)]
, (C2)

〈V (k, ε)| q̄iσµνqνb |B(p)〉 = −2T1(q
2)εµρστ ε

∗ρpσkτ , (C3)

〈V (k, ε)| q̄iσµνγ5qνb |B(p)〉 = iT2(q
2)
(
ε∗µ(m

2
B −m2

V )− (ε∗ · q)(p+ k)µ
)

+ iT3(q
2) (ε∗ · q)

(
qµ − q2

m2
B −m2

V

(p+ k)µ

)
, (C4)

where mV , k and ε denote the mass, 4-momentum and the polarization vector of the vector meson,

respectively. The seven form factors V,A0,1,2 and T1,2,3 are functions of the momentum transfer

q2, and q = p− k. Note that by parity-invariance 〈V (k, ε)| q̄b |B(p)〉 = 0.

LCSR provide the form factors at large recoil, q2 ! 14GeV2 [32]. There, the outcome of the LCSR

calculation is fitted to a physical q2 dependence, of pole or dipole structure. It is conceivable that

the form factor parametrization obtained in this way are valid at low recoil as well.

For completeness, we give here the parametrization of the form factors V,A1,2 from [32], which we

28

Bobeth, Hiller, van Dyk, extrapolating from Ball & Zwicky
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Preliminary results
Extrapolation of T1 and T2 to q2 = 0

Pole dominance [Becirevic & Kaidalov (2000), Ball & Zwicky (2005),
Becirevic et al. (2007)]

T1(q
2) =

T (0)

(1− q̃2)(1− αq̃2)
, T2(q

2) =
T (0)

1− q̃2/β
, q̃2 = q2/M2

B∗s
.

T (0) = 0.161(45) if MB∗s is a free parameter (left graph).
T (0) = 0.164(38) if MB∗s = 5.4158 GeV is fixed from PDG2010.

Zhaofeng Liu (DAMTP, University of Cambridge with Stefan Meinel, Alistair Hart, Ron R. Horgan, Eike H. Müller, Matthew Wingate September 7 2010)Lattice calculation of B → K (∗) ll form factors University of Warwick 14 / 12

Z
. L

iu
, C

K
M

20
10



Preliminary results
Extrapolation of T1 and T2 to q2 = 0

Pole dominance [Becirevic & Kaidalov (2000), Ball & Zwicky (2005),
Becirevic et al. (2007)]

T1(q
2) =

T (0)

(1− q̃2)(1− αq̃2)
, T2(q

2) =
T (0)

1− q̃2/β
, q̃2 = q2/M2

B∗s
.

T (0) = 0.161(45) if MB∗s is a free parameter (left graph).
T (0) = 0.164(38) if MB∗s = 5.4158 GeV is fixed from PDG2010.

Zhaofeng Liu (DAMTP, University of Cambridge with Stefan Meinel, Alistair Hart, Ron R. Horgan, Eike H. Müller, Matthew Wingate September 7 2010)Lattice calculation of B → K (∗) ll form factors University of Warwick 14 / 12

Multip
ly b

y 2
 to co

mpare
 

Becire
vic,

 et al
; Ball, 

et al
.

Z
. L

iu
, C

K
M

20
10



B ➙ V plan

✤ Check factors of 2, kinematic factors

✤ Look for SU(3) breaking effects (should be smaller 
than errors)

✤ Series expansion fits

✤ How to estimate errors due to finite width?
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discretization errors



preliminary



Isgur-Wise relation

f+ − mB

mB + mP
fT = O

(
ΛQCD

mB

)1/2

We see roughly

f+ ≈ 1.05fT



B ➙ P plan

✤ Series expansion fits (generalized to include varying 
masses and finite a)

✤ Find ratios which isolate SU(3) breaking

✤ Quantify f+, fT deviation from Isgur-Wise

✤ Look to better actions to reduce a dependence



Summary

✤ Unquenched calculation of B ➙ V form factors

✤ Enhanced statistical precision exposing 
discretization errors

✤ Appears that fT < f+.  1/m effects computable

✦ Action accurate through 1/m2

✦ Still need to analyze m.e. of 1/m operators (small)

✤ Difficult to extract SU(3)F breaking effects



Forecast

✤ New lattices with smaller discretization errors 
(AsqTad ➞ HISQ)

✤ Beyond NRQCD, reduction in matching uncertainty 
which is dominant



ECT* Workshop, Trento, April 2012

✤ “Beautiful Mesons and Baryons on the Lattice”

✤ Organizers: M.W., W. Detmold, C.-J. D. Lin

✤ Bring together phenomenology & lattice, etc

✦ Rare decays, b baryons: lattice, pheno, expt

✦ Status of LQCD results, reducing errors, new opportunities

✦ χPT for b hadrons, lattice methods for b

✤ Talk to each other Mon-Wed

✤ Try to keep technical talks to Thurs, Fri


