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Abstract

A review of the main elements of (fractional) analytical QCD is

presented. The main part of the review is focused on the intro-

duction of the Shirkov-Solovtsov and Bakulev-Mikhailov-Stefanis

approaches and their recent extension beyond the leading order of

perturbation theory. We present various representations, details of

their construction and show their applicability.



0. History. QED.

Consider so-called polarization operator D(k2) in QED. Leading

logarithmic terms of D(k2) in the n order of perturbation theory

with |k2| >> m2 (m is the electron mass) have the following form:

(e2F (K2,m2))n/K2, K2 = −k2 ≥ 0, F (K2,m2) =
1

3π
ln















K2

4m2















.

Resummation of the large logarithms leads to

(Landau,Abrikosov,Khalatnikov:1954):

Dper(k
2) =

1

K2

1

1− e2
3π ln







K2

4m2







.

Then, there is the pole (so-called Landau pole) at K2
p:

K2
p = 4m2e3π/e

2

and QED is not applicable atK2 ≥ K2
p (Landau,Pomeranchuk:1955).



With another side, there is so-called Kallen-Lehmann representa-

tion:

D(k2) =
1

K2 +
∫ ∞
4m2 dz

I(z)

z +K2, I(z) = ImD(iε−K2)

and Dper(k
2) is not in agreement with the Kallen-Lehmann repre-

sentation.

Combination of the Kallen-Lehmann representation and pertur-

bation theory (or same, perturbation theory for I(z)) has been

considered in (Redmond:1958), (Redmond,Uretsky:1958),

(Bogolyubov,Logunov,Shirkov:1959).



We follow (Bogolyubov,Logunov,Shirkov:1959).

From calculation (Landau,Abrikosov,Khalatnikov:1954) they ob-

tained that Iper(z) = 0 for z < 4m2 and for z ≥ 4m2:

Iper(z) =
e2

3πz

1












1− e2
3π ln







z−4m2

4m2













2
+ e2

9









.

Using Iper(z) in the Kallen-Lehmann representation they obtained

at |k2| >> m2

D(k2) =
1

K2

1

1− e2
3π ln







K2

4m2







+
(3π)/e2

K2 −K2
p
.

The additional term cancels exacly Landau pole at K2 = K2
p.

Moreover, it cannot be obtained in the framework of perturbation

theory, since it cannot be expanded in e2-series.



Thus, the combination of perturation theory and Kallen-Lehmann

representation (i.e. perturbation theory for spectral function) does

not lead to the Landau problem in QED.

In the general case the QCD couplant is defined as a product of

propagators and a vertex function. Therefore, one might pose a

question concerning the analytic properties of this quantity. This

matter has been examined (Ginzburg,Shirkov:1965).

It was shown that in this case the integral representation of the

Kallen-Lehmann type holds for the running coupling, too. Pro-

ceeding from these motivations, the analytic approach was lately

extended to Quantum Chromodynamics by D.V. Shirkov and I.L.

Solovtsov.



1. Introduction

According to the general principles of (local) quantum field the-

ory (QFT) (Bogolyubov,Shirkov:1959); (Oehme:1994)

observables in the spacelike domain can have singularities only with

negative values of their argument Q2.

On the other hand, for large values ofQ2, these observables are usu-

ally represented as power series expansion by the running coupling

constant (couplant) αs(Q
2), which, in turn, has a ghost singularity,

the so-called Landau pole, for Q2 = Λ2.

To restore analyticity, this pole must be removed.



Strong couplant αs(Q
2) obeys the renormalized group equation

L ≡ ln
Q2

Λ2
=

∫ as(Q
2) da

β(a)
, as(Q

2) =
αs(Q

2)

4π
, as(Q

2) = β0 as(Q
2)

with some boundary condition and the QCD β-function:

β(as) = −
∑

i=0
βia

i+2
s = −β0a

2
s (1 +

∑

i=1
bia

i
s), bi =

βi
βi+10

,

where the first fifth coefficients, i.e. βi with i ≤ 4, are exactly

known (Baikov,Chetyrkin,Kuhn: 2017).

So, already at leading order (LO), when as(Q
2) = a

(1)
s (Q2), we

have

a(1)s (Q2) =
1

L
,

i.e. a
(1)
s (Q2) does contain a pole at Q2 = Λ2.



In a series of papers (Shirkov,Solovtsov: 1996,1997);

(Milton,Solovtsov,Solovtsova: 1997); (Shirkov: 2001)

authors have developed an effective approach to eliminate the Lan-

dau singularity without introducing extraneous IR regulators.

The idea: the dispersion relation, which connects the new analytic

couplant AMA(Q
2) with the spectral function rpt(s), obtained in

the framework of perturbative theory. In LO

A
(1)
MA(Q

2) =
1

π

∫ +∞
0

ds

(s +Q2)
r
(1)
pt (s) , r

(1)
pt (s) = Im a(1)s (−s− iǫ) ,



So, let’s repeat once again: the spectral function is taken directly

from perturbation theory, but the analytic couplant AMA(Q
2) is

restored using dispersion relations.

This approach is called Minimal Approach (MA) (Cvetic, Valen-

zuela: 2008) or Analytic Perturbation Theory (APT) (Shirkov,

Solovtsov:1996,1997); (Milton,Solovtsov,Solovtsova:1997);

(Shirkov:2001)

Thus, MA QCD is a very convenient approach that combines the

general (analytical) properties of quantum field quantities and the

results obtained within the framework of perturbative QCD, leading

to the appearance of the MA couplant AMA(Q
2), which is close to

the usual strong couplant as(Q
2) in the limit of large values of its

argument and completely different at Q2 ≤ Λ2.



A further development of APT is the so-called fractional APT

(FAPT), which extends the principles of constructing to non-integer

powers of couplant, which arise for many quantities having non-zero

anomalous dimensions (Bakulev,Mikhailov,Stefanis: 2005,2008,2010),

with some privious study (Karanikas,Stefanis: 2001)

and reviews (Bakulev: 2008), (Stefanis: 2013).

The results in FATP have a very simple form in LO perturbation

theory, but they are quite complicated in higher orders.



In (Kotikov,Zemlyakov: 2022), in Euclidean space FART was ex-

tended to higher orders of perturbation theory using the so-called

1/L-expansion of the usual couplant.

For an ordinary coupling constant, this expansion is applicable only

for large values of its argument Q2, i.e. for Q2 >> Λ2.

In the case of an analytic couplant, the situation changes greatly

and this expansion is applicable for all values of the argument. This

is due to the fact that the non-leading expansion corrections dis-

appear not only at Q2 → ∞, but also at Q2 → 0, which leads to

non-zero (small) corrections only in the region Q2 ∼ Λ2.



This talk is organized as follows.

In Section 2 we firstly review the basic properties of the usual strong

couplant and its 1/L-expansion.

Section 3 contains fractional derivatives (i.e. ν-derivatives) of the

usual strong couplant, which 1/L-expansions can be represented

as some operators acting on the ν-derivatives of the LO strong

couplant. This is the key idea of this paper, which makes it possible

to construct 1/L-expansions of ν-derivatives of MA couplants for

high-order perturbation theory, which are presented in Section 4

Sections 5 contains the application of this approach to the Bjorken

sum rule.

In conclusion, some final discussions are given.



2. Strong coupling constant

As shown in Introduction, the strong couplant as(Q
2) obeys the

renormalized group equation. When Q2 >> Λ2, it can be solved

by iterations in the form of 1/L-expansion (for simplicity we present

here the first 3 terms of the expansion). [In (Kotikov,Zemlyakov:

2022) the 5 terms of the expansion have been considered in an

agreement with the number of known coefficients βi]:

a
(1)
s,0(Q

2) =
1

L0
, a

(i+1)
s,i (Q2) = a

(1)
s,i(Q

2) +
i
∑

m=2
δ
(m)
s,i (Q2), Li = ln

Q2

Λ2i
,

where the corrections δ
(m)
s,k (Q2) can be represented as follows

δ
(2)
s,k(Q

2) = −
b1 lnLk

L2
k

, δ
(3)
s,k(Q

2) =
1

L3
k
[b21(ln

2Lk − lnLk − 1) + b2] .



We show exactly that at any order of perturbation theory, the cou-

plant as(Q
2) contains its own parameter Λ of dimensional trans-

mutation, which is fitted from experimental data.

It relates with the normalization αs(M
2
Z) as

Λi = MZ exp{−
1

2
[

1

as(M2
Z)

+ b1 ln as(M
2
Z)

+
∫ as(M

2
Z)

0 da











1

β(a)
+

1

a2(β0 + β1a)











]} ,

where αs(MZ) = 0.1176 in PDG20.

The coefficients βi depend on the number f of active quarks,

which changes at thresholds Q2
f ∼ m2

f . Here we will not consider

the f -dependence of Λ
f
i and as(f,M

2
Z). Since we will mainly

consider the region of low Q2, we will use the results for Λ
f=3
i .



2.2 Discussions
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Figure 1: The results for a
(i+1)
s,i (Q2) and (Λf=3

i )2 (vertical lines) with i = 0, 2, 4.

In Fig. 1 one can see that the strong couplants a
(i+1)
s,i (Q2) be-

come to be singular at Q2 = Λ2i . The Λ0 and Λi (i ≥ 1) values

are rather different (Chen,Liu,Wang,Waqas,Peng: 2021):

Λ
f=3
0 = 142 MeV, Λ

f=3
1 = 367 MeV, Λ

f=3
2 = 324 MeV,

Λ
f=3
3 = 328 MeV .



3. Fractional derivatives

Following (Cvetic,Valenzuela: 2006) we introduce the derivatives

(in the (i + 1)-order of perturbation theory)

ã
(i+1)
n+1 (Q2) =

(−1)n

n!

dna
(i+1)
s (Q2)

(dL)n
,

which will be very convenient in the case of the analytic QCD.

The series of derivatives ãn(Q
2) can successfully replace the cor-

responding series of the as-powers. Indeed, every derivative de-

crease the power of as but it comes together with the additional

β-function ∼ a2s, appeared during the derivative. So, every appli-

cation of derivative produces the additional as, and, thus, indeed

the series of derivatives can be used instead of the series of the

as-powers.



At LO, the series of derivatives ãn(Q
2) exactly coincide with ans .

Beyond LO, the relation between ãn(Q
2) and ans was established

in (Cvetic,Valenzuela: 2006), (Cvetic,Kogerler,Valenzuela: 20110)

and extended to the fractional case, where n → a non-integer ν,

in (Cvetic,Kotikov: 2012).

Now we consider the 1/L expansion of ã
(k)
ν (Q2). After some

calculatins, we have

ã
(1)
ν,0(Q

2) = (a
(1)
s,0(Q

2))
ν
=

1

Lν
0
,

ã
(i+1)
ν,i (Q2) = ã

(1)
ν,i(Q

2) +
i
∑

m=1
Cν+m
m δ̃

(m+1)
ν,i (Q2),

δ̃
(m+1)
ν,i (Q2) = R̂m

1

Lν+m
i

, Cν+m
m =

Γ(ν +m)

m!Γ(ν)
,

where

R̂1 = b1[Ẑ1(ν) +
d

dν
], R̂2 = b2 + b21[

d2

(dν)2
+ 2Ẑ1(ν + 1)

d

dν
+ Ẑ2(ν + 1)].



The representation of the δ̃
(m+1)
ν,i (Q2) corrections as R̂m-operators

is very important to use. This will make it possible to present high-

order results for the analytic couplant in a similar way.

Here

Z2(ν) = S2
1(ν)− S2(ν),

Z1(ν) ≡ S1(ν) = Ψ(1 + ν) + γE, S2(ν) = ζ2 − Ψ′(1 + ν),

and

Sm(N ) =
N
∑

k=1

1

km
, Ẑ1(ν) = Z1(ν)− 1, Ẑ2(ν) = Z2(ν)− 2Z1(ν) + 1.

Note that operators like (d/dν)m were used earlier in (Bakulev,Mikhailov,Stefanis:

2005,2008,2010).



4. MA coupling

There are several ways to obtain analytical versions of the strong

couplant as (see, e.g. (Bakulev: 2008)).

Here we will follow MA approach (Shirkov, Solovtsov: 1996), (Mil-

ton,Solovtsov,Solovtsova: 1997), (Shirkov: 2001)

as discussed in Introduction.

To the fractional case, the MA approach was generalized by Bakulev,

Mikhailov and Stefanis (hereinafter referred to as the BMS ap-

proach) (Bakulev,Mikhailov,Stefanis: 2005,2008,2010).

We first show the LO BMS results, and later we will go beyond

LO, following our results for the usual strong couplant obtained in

the previous section.



4.1 LO

The LO minimal analytic coupling A
(1)
MA,ν have the form

(Bakulev,Mikhailov,Stefanis: 2005)

A
(1)
MA,ν,0(Q

2) =




a
(1)
ν,0(Q

2)






ν
−

Li1−ν(z0)

Γ(ν)
≡

1

Lν
0
−∆

(1)
ν,0 ,

where

Liν(z) =
∞
∑

m=1

zm

mν =
z

Γ(ν)

∫ ∞
0

dt tν−1

(et − z)
, zi =

Λ2i
Q2

is the Polylogarithmic function.

For ν = 1 we recover the famous Shirkov-Solovtsov result (Shirkov,

Solovtsov: 1996)

A
(1)
MA,0(Q

2) ≡ A
(1)
MA,ν=1,0(Q

2) = a
(1)
s,0(Q

2)−
z0

1− z0
=

1

L0
−

z0
1− z0

.



4.2 Beyond LO

Following to the LO analytic couplant, we consider the difference

between the derivatives of usual and MA couplants:

ÃMA,n+1(Q
2) =

(−1)n

n!

dnAMA(Q
2)

(dL)n
.

For the differences of fracted derivatives of usual and MA cou-

plants

∆̃
(i+1)
ν,i ≡ ã

(i+1)
ν,i − Ã

(i+1)
MA,ν,i

we have the following results

∆̃
(i+1)
ν,i = ∆̃

(1)
ν,i +

i
∑

m=1
Cν+m
m R̂m











Li−ν−m+1(zi)

Γ(ν +m)











,

where the operators R̂i (i = 1, 2, 3, 4) are shown above.

After some evaluations, we obtain

∆̃
(i+1)
ν,i = ∆̃

(1)
ν,i +

i
∑

m=1
Cν+m
m Rm(zi)











Li−ν−m+1(zi)

Γ(ν +m)











,



where

R1(z) = b1[γE − 1 + M−ν,1(z)],

R2(z) = b2 + b21[M−ν−1,2(z) + 2(γE − 1)M−ν−1,1(z) + (γE − 1)2 − ζ2],

and

Liν,k(z) = (−1)k
dk

(dν)k
Liν(z) =

∞
∑

m=1

zm lnkm

mν , Mν,k(z) =
Liν,k(z)

Liν(z)
.



So, we have for MA analytic couplants Ã
(i+1)
MA,ν the following ex-

pressions:

Ã
(i+1)
MA,ν,i(Q

2) = Ã
(1)
MA,ν,i(Q

2) +
i
∑

m=1
Cν+m
m δ̃

(m+1)
MA,ν,i(Q

2)

where

Ã
(1)
MA,ν,i(Q

2) = ã
(1)
ν,i(Q

2)−
Li1−ν(zi)

Γ(ν)
,

δ̃
(m+1)
MA,ν,i(Q

2) = δ̃
(m+1)
ν,i (Q2)− Rm(zi)

Li−ν+1−m(zi)

Γ(ν +m)

and δ̃
(k+1)
ν,m (Q2) are given above.

There are three more representations for Ã
(1)
MA,ν,i(Q

2) (see (Kotikov,

Zemlyakov: 2005)) that give exactly the same numerical results.

Each of the representations is useful in its own kinematic range.



4.3. The case ν = 1

For the case ν = 1,

A
(i+1)
MA,i(Q

2) ≡ Ã
(i+1)
MA,ν=1,i(Q

2) = A
(1)
MA,i(Q

2) +
i
∑

m=1
δ̃
(m+1)
MA,1,i(Q

2)

where

A
(1)
MA,i(Q

2) = ã
(1)
ν=1,i(Q

2)− Li0(zi) = a
(1)
s,i(Q

2)− Li0(zi),

δ̃
(m+1)
MA,1,i(Q

2) = δ̃
(m+1)
1,i (Q2)− Rm(zi)

Li−m(zi)

m!
and

Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, Li−2(z) =

z(1 + z)

(1− z)3
.

The results can be used for phenomenological studies beyond LO

in the framework of the minimal analytic QCD.



4.4 Discussions
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Figure 2: The results for A
(i+1)
MA,ν=1,i(Q

2) with i = 0, 2, 4.

From Fig. 2 we can see differences between A
(i+1)
MA,ν=1,i(Q

2) with

i = 0, 2, 4, which are rather small and have nonzero values around

the position Q2 = Λ2i .



Thus, we can conclude that contrary to the case of the usual

couplant, considered in Fig. 1, the 1/L-expansion of the MA cou-

plant is very good approximation at any Q2 values. Moreover,

the differences between A
(i+1)
MA,ν=1,i(Q

2) and A
(1)
MA,ν=1,0(Q

2) are

small. So, the expansions of A
(i+1)
MA,ν=1,i(Q

2) i ≥ 1 through the one

A
(1)
MA,ν=1,0(Q

2) done in (Bakulev,Mikhailov,Stefanis: 2005,2008,2010)

very good approximations.

Note that above representation of δ
(i+1)
MA,ν=1,i(Q

2) looks very simi-

lar to its expansion in terms ofA
(i+1)
MA,ν=1,i(Q

2) done in (Bakulev,Mikhailov,

Stefanis: 2005,2008,2010).



Also the approximation

A
(i+1)
MA,ν=1,i(Q

2) = A
(1)
MA,ν=1,0(kiQ

2), (i = 1, 2) ,

introduced in (Pasechnik,Shirkov,Teryaev,Solovtsova,Khandramai:

2010,2012) and used in (Kotikov,Krivokhizhin,Shaikhatdenov: 2012),

(Sidorov,Solovtsova: 2014) is very convenient, too.

Indeed, since the corrections δ
(i+1)
MA,ν=1,i(Q

2) are very small, then

one can see that the MA couplants A
(i+1)
MA,ν=1,i(Q

2) are very similar

to the LO ones taken with the corresponding Λi.

There are three more representations for MA coulant !!!



5. Bjorken sum rule

The polarized (nonsinglet) BSR is defined as the difference be-

tween the proton and neutron polarized SFs, integrated over the

entire interval x

Γ
p−n
1 (Q2) =

∫ 1
0 dx [g

p
1(x,Q

2)− gn1 (x,Q
2)].

Theoretically, the quantity can be written in the OPE form (Shuryak,

Vainshtein: 1982), (Balitsky, Braun, Kolesnichenko: 1990)

Γ
p−n
1 (Q2) =

gA
6
(1−DBS(Q

2)) +
∞
∑

i=2

µ2i(Q
2)

Q2i−2 ,

where gA=1.2762 ± 0.0005 (PDG: 2020) is the nucleon axial

charge, (1−DBS(Q
2)) is the leading-twist contribution, and µ2i/Q

2i−2

(i ≥ 1) are the higher-twist (HT) contributions.



Since we include very small Q2 values here, this representation of

the HT contributions is inconvenient. It is much better to use the

so-called “massive” representation for the HT part (introduced in

(Teryaev: 2013), (Khandramai, Teryaev, Gabdrakhmanov: 2016)):

Γ
p−n
1 (Q2) =

gA
6
(1−DBS(Q

2)) +
µ̂4M

2

Q2 +M2 ,

where the values of µ̂4 and M2 have been fitted in (Ayala et al.:

2018) in the different analytic QCD models.

In the case of MA QCD, from (Ayala et al.: 2018)

M2 = 0.439± 0.012± 0.463, µ̂MA,4 = −0.173± 0.002± 0.666 ,

where the statistical (small) and systematic (large) uncertainties

are presented.



Another form, which is correct at very small Q2 values, has been

proposed in (Gabdrakhmanov, Teryaev, Khandramai: 2017))

Γ
p−n
1 (Q2) =

gA
6
(1−DBS(Q

2)) +
µ̂4M

2(Q2 +M2)

(Q2 +M2)2 +M2σ2
,

where small value σ ≡ σρ = 145 MeV (the ρ-meson decay width)

has been used.

Up to the k-th PT order, the perturbative part has the form

D
(1)
BS(Q

2) =
4

β0
a(1)s , D

(k≥2)
BS (Q2) =

4

β0
a(k)s







1 +
k−1

∑

m=1
dm(a(k)s )m







 ,

where d1, d2 and d3 are known from exact calculations. The exact

d4 value is not known, but it was recently estimated in (Ayala,

Pineda: 2022))



Converting the powers of couplant into its derivatives, we have

D
(1)
BS(Q

2) =
4

β0
ã
(1)
1 , D

(k≥2)
BS (Q2) =

4

β0







ã
(k)
1 +

k
∑

m=2
d̃m−1ã

(k)
m







 ,

where bi = βi/β
i+1
0 and

d̃1 = d1, d̃2 = d2 − b1d1, d̃3 = d3 −
5

2
b1d2 − (b2 −

5

2
b21) d1,

d̃4 = d4 −
13

3
b1d3 − (3b2 −

28

3
b21) d2 − (b3 −

22

3
b1b2 +

28

3
b31) d1 .

For the case of 3 active quark flavors (f = 3), we have

d1 = 1.59, d2 = 3.99, d3 = 15.42 d4 = 63.76,

d̃1 = 1.59, d̃2 = 2.73, d̃3 = 8.61, d̃4 = 21.52 ,

i.e., the coefficients in the series of derivatives are slightly smaller.



In MA QCD, the results for BSR become as follows

Γ
p−n
MA,1(Q

2) =
gA
6
(1−DMA,BS(Q

2)) +
µ̂MA,4M

2(Q2 +M2)

(Q2 +M2)2 +M2σ2
,

where the perturbative part DBS,MA(Q
2) takes the form

D
(1)
MA,BS(Q

2) =
4

β0
A
(1)
MA,

Dk≥2
MA,BS(Q

2) =
4

β0
(A

(k)
MA +

k
∑

m=2
d̃m−1 Ã

(k)
MA,ν=m) .



M2 for σ = σρ µ̂MA,4 for σ = σρ χ2/(d.o.f.) for σ = σρ

(for σ = 0) (for σ = 0) (for σ = 0)

LO 1.592 ± 0.300 -0.168 ± 0.002 0.788

(1.631 ± 0.301) (-0.166 ± 0.001) (0.789)

NLO 1.505 ± 0.286 -0.157 ± 0.002 0.755

(1.545 ± 0.287) (-0.155 ± 0.001) (0.757)

N2LO 1.378 ± 0.242 -0.159 ± 0.002 0.728

(1.417 ± 0.241) (-0.156 ± 0.002) (0.728)

N3LO 1.389 ± 0.247 -0.159 ± 0.002 0.747

(1.429 ± 0.248) (-0.157 ± 0.002) (0.747)

N4LO 1.422 ± 0.259 -0.159 ± 0.002 0.754

(1.462 ± 0.259) (-0.157 ± 0.001) (0.754)

Table 1: The values of the fit parameters with σ = σρ (σ = 0).

6.1. Results

The results of calculations are presented in Table 1 and in Fig.

4. Here we use the Q2-independent M and µ̂4 values and the

twist-two parts for the cases of usual PT and APT, respectively.
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Figure 3: The results for Γp−n
1 (Q2) in the first four orders of PT with σ = σρ.

As seen in Fig. 3, the results obtained using conventional cou-

plants are not good and getting worse and worse with increasing

PT order. Indeed, the deterioration increases with the PT order

in this case (see (Pasechnik et al.: 2008,2010,2012), (Ayala et al.:

2017,2018), (Kotikov, Zemlyakov: 2023). Thus, the use of the



“massive” twist-four form does not improve these results, since at

Q2 → Λ2i conventional couplants become to be singular, that leads

to large and negative results for the twist-two part. As the PT or-

der increases, usual couplants become singular for ever larger Q2

values, while BSR tends to negative values for ever larger Q2 val-

ues. (see also Fig. 15 in (Kotikov, Zemlyakov: 2023)). Thus, the

discrepancy between theory and experiment increases with the PT

order.

In the case of using MA couplants, we see in Table 1 that the

cases σ = 0 and σ = σρ lead to very similar values for the fitting

parameters and χ2-factor. So, in Fig. 4 we show only the case

with σ = σρ. The quality of the fits is very good, as evidenced

quantitatively by the values of χ2/(d.o.f.). Moreover, our results

obtained for different PT orders are very similar to each others: the



corresponding curves in Fig. 4 are indistinguishable. One can also

see the important role of the twist-four term. Without it, the value

of Γ
p−n
1 (Q2) is about 0.16, which is very far from the experimental

data.
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Figure 4: The results for Γp−n
1 (Q2) in the first four orders of APT with σ = σρ.



At Q2 ≤ 0.3 GeV2 we also see good agreement with the phe-

nomenological models: Burkert-Ioffe one (Burkert, Ioffe: 1992,1994)

and especially LFHQCD one (Brodsky, de Teramond, Dosch, Er-

lich: 2015). For larger Q2 values our results are below the results

of the phenomenological models and at Q2 ≥ 0.5 GeV2 are below

the experimental data. We hope to improve agreement with using

“massive” forms of HT higher twist contributions h2i with i ≥ 3.

This is a subject of future investigations.



6. Conclusions

In this talk, we have focused on the introduction of the Shirkov-

Solovtsov and Bakulev-Mikhailov-Stefanis approaches and their re-

cent extension beyond the leading order of perturbation theory.

We have considered 1/L-expansions of the ν-derivatives of the

strong couplant as expressed as combinations of operators R̂m

applied to the LO couplant a
(1)
s .

Applying these operators to the ν-derivatives of the LO MA cou-

plantA
(1)
MA, we have got different representations for the ν-derivatives

of the MA couplant: Ã
(i)
MA,ν, i.e. , in each i-order of PT.



The high-order corrections are negligible in the Q2 → 0 and

Q2 → ∞ asymptotics and are nonzero in a neighborhood of the

point Q2 = Λ2. Thus, in fact, they are really only small corrections

to the LO MA couplant A
(1)
MA,ν(Q

2).

As can be clearly seen, all our results have a compact form and

do not contain complicated special functions, such as the Lambert

W -function (Magradze: 1999), which already appears in two-loop

order as an exact solution to the usual couplant and which was

used to estimate the MA couplants in (Bakulev,Mikhailov,Stefanis:

2010).



As a example, we considered the Bjorken sum rule and obtained

results similar to previous studies in

(Pasechnik,Shirkov,Teryaev,Solovtsova,Khandramai: 2008,2009,2011),

(Ayala,Cvetic,Kotikov,Shaikhatdenov: 2018) because the high or-

der corrections are small. The results based on usual perturbation

theory do not not agree with the experimental data at Q2 ≤ 1.5

GeV2. MA APT leads to good agreement with the data when we

used the “massive” version for high-twist contributions.


