Advanced Python
Mastery

David Beazley (@dabeaz)
https://www.dabeaz.com

Copyright (C) 2007-2023
(CC BY-SA 4.0), David Beazley

©@®O

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Table of Contents

. Course Setup

. Python Review (Optional)

. Idiomatic Data Handling

. Classes and Objects

Inside Python Obijects

Functions, errors, and testing

. Working with Code
Metaprogramming

lterators, Generators, and Coroutines
Modules and Packages

©ONOOIAWNZO

This course is an introduction to Python's more advanced features, with a
focus on how they are applied in larger applications and frameworks. The
target audience is software developers and anyone who wants to take their
Python skills far beyond simple script writing. A major goal of the course is to
understand how you can take control over the behavior of the language itself
and bend it in ways that serve the needs of your application. By the end of
this course, you'll know a lot more about the magic used by frameworks,
different design options, and associated tradeoffs.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

About the Author

David Beazley has been writing Python since 1996 and is
the author of "Python Distilled" (Addison-Wesley), "Python
Cookbook, 3rd Edition" (O'Reilly Media), and the "Python
Programming Language: LiveLessons" video series
(Addison-Wesley). He regularly teaches advanced
programming courses

https:/www.dabeaz.com/courses.html

Recipes for Mastering Python 3 l
o 7 7
7 e
Vgl &Y
]

‘ % livelessons® Python Programming Language

Python WKWk 50 reviews
Programming by David Beazley

on-W ey Professional

Python
Distilled

§l Language Gk
-

Pythort «
Cookbook https:/www.safaribooksonline.com

Video Topics: Pytho

O'REILLY"
gaz.com,

Course License and Usage

® Official course materials are here

https://aithub.com/dabeaz-course/python-master

This course is released under the Creative Commons Attribution-Share Alike
4.0 International (CC-SA 4.0) license.

You are free to use and adapt this material in any way that you wish as you

as you give attribution to the original source. If you choose to use selected
presentation slides in your own course, | kindly ask that the copyright notice,
license, and authorship in the lower-left corner remain present.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

About This Course

® Overheard:

"The power of Python grows according to the skill
and experience of the person using it."

® This course is about that!
® Going far beyond the tutorial
® | ooking at things that you might care about if

you're going to write "real" programs

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Target Audience

® Programmers who are writing Python code that
will be used by others (libraries, application
frameworks, domain-specific languages, etc.)

® TJopics strongly focus on software development
® Proper usage of Python features
® Performance tradeoffs

® Design options

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

System Requirements

® You should be using Python 3.6 or newer
® You need a local development environment

® Any operating system is fine

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Prerequisites

® This course assumes that you have already been
using Python in some manner

® Previously completed some kind of online
tutorial, taken an introductory course, or just
worked on some code yourself.

® You should know the basics of running the
interpreter and writing programs

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Section 0

Course Setup

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Required Files

® Where to get Python (if not installed)

http://www.python.org

® This course is written for Python 3.6

® Exercises for this class

github.com/dabeaz-course/python-mastery

® You should clone/fork the repo first

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

0-

2

Working Environment

® This is not an introductory course

® Use whatever tools you currently use to
develop Python code

® Editors, IDEs, etc.

® Almost everything in this course is platform-
neutral and will work everywhere

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

0-

3

Class Exercises

® Exercise descriptions are found in

python-mastery/Exercises/

® All exercises have solution code

Write a program that opens this file, reads all lines, ¢
int(s).To convert a string to a floating point, use :

[Back | Solution | Next]

Look for the link at the bottom!

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 0- 4

Class Exercises

® VWorking solution code can be found in

python-mastery/Solutions

® Each problem has its own directory

2 |/ Exercise 2.1
2 2/ Exercise 2.2

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

0-

5

General Tips

® Save all of your work in "python-mastery"
® Exercises assume this structure
® Exercises are meant to be worked in order

® |f stuck, you can often start by copying solution
code from Solutions/ and working forward.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Section |

Python Review

(Optional)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Overview

® A very fast-paced review of Python

® The absolute basics that you should already
know if you are taking this course

® Essential details for later parts of the class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

All Things Python

http://www.python.org

® Downloads

® Documentation and tutorial
® Community Links

® News and more

® Tutorial

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Running Python

® Python programs run inside an interpreter

® The interpreter is a simple "console-based
application that normally starts from a
command shell (e.g., the Unix shell)

bash % python3

Python 3.6.0 (default, Jan 27 2017, 13:20:23)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)]
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Interactive Mode

® The interpreter runs a "read-eval" loop

>>> print('hello world')
hello world

>>> 37*%42

1554

>>> for i in range(5):
print (i)

0

1

2

3

4

>>>

® Executes simple statements typed in directly

® Very useful for debugging, exploration

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |- 5

Creating Programs

® Programs are put in .py files

helloworld.py
print('hello world')

® Source files are simple text files

® Create with your favorite editor (e.g., emacs)

® Make sure you use "python" mode

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Running Programs

® Command line

bash % python3 helloworld.py
hello world
bash %

® #! (Unix)
#!/usr/bin/env python3

helloworld.py
print('hello world')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

python -i

® For debugging, use python -i

bash % python3 -i helloworld.py
hello world
>>>

® Runs your program and then enters the
Python interactive shell afterwards

® Quite useful for debugging, testing, etc.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise |.|

Time: 10 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Program Execution

® A Python program is a sequence of statements
® Fach statement is terminated by a newline

® Statements are executed one after the other
until you reach the end of the file.

® VWhen there are no more statements, the
program stops

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|10

Comments

® Comments are denoted by #

This is a comment
height = 442 # Meters

® Extend to the end of the line

® There are no block comments in Python
(e.g., [* .. %).

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Variables

® A variable is 2a name for some value

® Variable names follow same rules as C

[A-Za-z_][A-Za-20-9 _T*

® You do not declare types (int, float, etc.)

height = 442 # An integer
height = 442.0 # Floating point
height = 'Really tall' # A string

® Differs from C++/Java where variables have a
fixed type that must be declared.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Expressions

® Math works normally (precedence, assoc, etc.)

a =2+ 3
b=2+ 3 * 4
c = (2 + 3) * 4

® Operators are same as C

® Other operators (Python-specific)

7 // 4 Truncating division
7 ** 4 Power operator

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Conditionals

® |[f-else

if a < b:

print('Computer says no')
else:

print ('Computer says yes')

® |[f-elif-else

if a == '+':
op = PLUS
elif a == '-"':
op = MINUS
elif a == "*':
op = TIMES
else:

op = UNKNOWN

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |- 14

Relations

® Relational operators

® Boolean expressions (and, or; not)

if b >= a and b <= c:
print('b is between a and c')

if not (b < a or b > ¢):
print('b is still between a and c')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Looping

® While statement loops on a condition

while count > O0:
print('T-minus', count)
count -=1

print('Boom! ')

® For-loop iterates over items (e.g., foreach)

nums = [1,7,10,23]
for x in nums:
print (x) # Prints 1, 7, 10, 23

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Looping Control-Flow

® break - terminates a loop early

for name in names:
if name == 'python':
break

® continue - skip to next iteration

for line in lines:
if line == '\n': # Ignore blank lines
continue

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Printing

® The print function

print (x)
print(x,y,z)
print('Your name is', name)

® Produces a single line of text

® |tems are separated by spaces

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|- 18

Formatted Printing

® f-strings

print(f'{name:>10s} {shares:>10d} {price:>10.2f}")

® format() method

print('{:10s} {:10d} {:10.2f}'.format(name,shares,price))

® Use % operator

print('%$10s %10d %10.2f"' % (name, shares, price))

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I-19

pass statement

® Sometimes you will need to specify an
empty block of code

if name in namelist:
Not implemented yet (or nothing)
pass

else:
statements

® pass isa 'no-op" statement

® |t does nothing, but serves as a placeholder
for statements (possibly to be added later)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 20

Core Python Objects

® Programs are built upon a core set of built-in
datatypes (numbers, strings, lists, etc.)

None # Nothing, nada, nil, ...
True # Boolean

23 # Integer

2.3 # Float

2+37 # Complex

'Hello World' # String (Unicode)
b'Hello' # Byte string
('www.python.org',80) # Tuple

[1,2,3,4] # List

{'name':'IBM', ... } # Dictionary

® You should have already used most of these
types if you've written any Python at all

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-21

Manipulating Objects

® Objects are manipulated by operators

a+ b # Add

X = a[i] # Indexed lookup

y = a[i:]j] # Slicing

a[i] = val # Indexed assignment
X in a # Containment

. many others ...

® Also manipulated by various methods

a.find('python')
a.split(', ")
b.append(2)

® Available operators/methods depends on the
object being manipulated

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 22

Exercise |.2

Time: | 5 minutes

|-23

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

File Input and Output

® Opening a file

f

g
h

open(' foo.txt','r")
open('bar.txt','w'")
open('log.txt','a')

® Jo read data

line
data

f.readline()
f.read([maxbytes])

® To write text to a file

g.write('some text')

Open for reading
Open for writing
Open for appending

Read a line of text
Read data

® Closing a file (when done)

f.close()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-24

Closing Files

® Files need to be closed after use

f = open('foo.txt','r")
Use £

é:élose()
® |n modern Python, use 'with’

with open('foo.txt','r') as f:
Use £

Automatically closed here

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-25

Common ldioms

® Reading a file line-by-line

with open('foo.txt','r') as f:
for line in f:
Process the line

® Reading an entire file into a string

with open('foo.txt','r') as f:
data = f.read()

® Write to a file

with open('foo.txt','w') as f:
f.write('some text\n')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-26

Text Data

® When reading text, Python 3 assumes unicode

® You might need to give an encoding

f = open('foo.txt','r',encoding="'latin-1")

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-27

Binary Data

® Make sure you use the right file modes if
reading binary-encoded data

f
g

open(' foo.dat', 'rb')
open('bar.bin', 'wb')

® Data read/written to binary-mode files uses
normal 8-bit strings

® Will just have a lot of non-printing control
characters, embedded nulls, etc. for non-text

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-28

Exercise |.3

Time: 10 minutes

|-29

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Simple Functions

® Use functions for code you want to reuse

def sumcount(n):
total = 0
while n > 0:
total += n
n -=1
return total

® Calling a function

a = sumcount(100)

® A function is just a series of statements that
perform some task and return a result

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-30

Simple Functions

® Functions behave in a sane manner
® |nner variables have local scope

® Things like recursion work fine

® You can have default arguments

® Will say more about functions later, but you
should already know how to define and use
simple function definitions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-31

Exception Handling

® Errors are reported as exceptions

® An exception causes the program to stop

>>> int ('N/A'")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'N/A’
>>>

® For debugging, message describes what
happened, where the error occurred, along
with a traceback.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 32

Exceptions

® Exceptions can be caught and handled

® TJo catch, use try-except statement

for line in f:
fields = line.split()
try:
shares = int(fields[1])
exceptyValueError:
print("Couldn't parse”, line)

Name must match the kind of error
you're trying to catch

>>3 int ("N/A")
Trgceback (most recent call last):

““““
o,

o

i:ValueError: invalid literal for int() with base 10: 'N/A'

.,

o
""""""

. s

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 3 3

Exceptions

® TJo raise an exception, use the raise statement

raise RuntimeError('What a kerfuffle')

® Will cause the program to abort with an
exception traceback (unless caught by try-
except)

% python3 foo.py
Traceback (most recent call last):
File "foo.py", line 21, in <module>
raise RuntimeError("What a kerfuffle')
RuntimeError: What a kerfuffle

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|- 34

Exception Values

® Most exceptions have an associated value

® More information about what's wrong

raise RuntimeError('Invalid user name')

L

.

™

.
.
.,
.
.
g
“,
*,
o,
.,

try:

0
o
o
S
.
.
.
.
.
.
o
.
.
.
..
.
.
Py
.
.
.

st
et
ws®
et
wns®
e
wns®
wus®

LA

except RuntimeError as et

® [t's an instance of the exception type, but
often looks like a string

except RuntimeError as e:
print('Failed : Reason', e)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|-35

Catching Multiple Errors

® Can catch different kinds of exceptions
try:

except ValueError as e:

except TypeError as e:

® Alternatively, if handling is the same
try:

except (ValueError, TypeError) as e:

® Catching any exception (danger awaits)

try:

except Exception as e:

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 36

finally statement

® Specifies code that must run regardless of
whether or not an exception occurs
lock = Lock()

lock.acquire()
try:

finally:
lock.release() # release the lock

® Commonly use to properly manage
resources (especially locks, files, etc.)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-37

Exercise | .4

Time: 10 minutes

|-38

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Objects

® Python is an object-oriented language

® All of the basic data types (integers, strings,
lists, etc.) are examples of "objects”

® Objects involve data and a set of "methods”
that carry out various operations

a = 'Hello World' # A string object

b = a.upper() # A method applied to the string
items = [1,2,3] # A list object

items.append(4) # A method applied to the 1list

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 39

Classes

® You can make your own objects

class Player:
def init (self, x, y):

self.x = x
self.y =y
self.health = 100

def move(self, dx, dy):
self.x += dx
self.y += dy

def damage(self, pts):
self.health -= pts

® VWhat is a class?

® |t's all of the function definitions that
implement the various methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 40

Instances

® Created by calling the class as a function

>>> a = Player(2, 3)
>>> b = Player (10, 20)
>>>

® Fach instance gets its own data

>>> a.x

2
>>> b.x

10
>>>

® |nvoke the methods as follows

>>> a.move(l, 2)

>>> a.damage(10)
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-4]

init method

® This method initializes a new instance

® Called whenever a new object is created
>>> a = Player (2, 3)

class Player:
def init_ (self, x, y):
self.x = x
self.y = y
self.heal = 100

newly created object

® Mostly, it just stores the data attributes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 42

Methods

® Functions that operate on instances

class Player:

def move(self, dx, dy):
self.x += dx
self.y += dy

® The object is passed as first argument

>>> a.move(l, 2)

def move(self, dx, dy):

® By convention, the instance is called "self"

The name is unimportant---the object is always passed as the first
argument. It is simply Python programming style to call this
argument "self." It's similar to the "this" pointer in C++.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 43

Exercise |.5

Time: 10 minutes

|- 44

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Modules

® Any Python source file is a module

foo.py
def grok(a):

def spam(b):

® import statement loads and executes a module

import foo

a
b

foo.grok(2)
foo.spam('Hello')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-45

Namespaces

® A module is a collection of named values (i.e.,
it's said to be a "namespace”)

® The names are simply all of the global variables
and functions defined in the source file

® After import, module name used as a prefix

>>> import foo
>>> foo.grok(2)
>>>

® Module name is tied to source (foo -> foo.py)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 46

Globals Revisited

® Everything defined in the "global” scope is
what populates the module namespace

foo.py # bar.py

Xx = 42 x = 37
def grok‘\\\‘\x\\\\\\\\\ /////1 def spam(a
These definitions of x
are different

® Different modules can use the same names
and those names don't conflict with each
other (modules are isolated)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-47

Import as statement

® Changes the local name of a module

bar.py
import math as m

a = m.sin(x)

® Exactly the same as import except the
module object is assigned a different name

® The new name only applies locally within the
source file that did the import (other files can
import using the standard name without any
confusion)

|-48

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

from module import

® Lifts selected symbols out of a module and
puts them into local scope

bar.py
from math import sin,cos

def rectangular(r,theta):
X = r*cos(theta)
y = r*sin(theta)
return X,y

® Allows parts of a module to be used without
having to type the module prefix

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, I - 49

from module import *

® Takes all symbols from a module and places
them into local scope

bar.py
from math import *

def rectangular(r,theta):
X = r*cos(theta)
y = r*sin(theta)
return X,y

® Useful if you are going to use a lot of
functions from a module and it's annoying to
specify the module prefix all of the time

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

|- 50

from module import *

® You should almost never use it in practice
because it leads to poor code readability

® Example:

from math import *
from random import *

r = gauss(0.0,1.0) # In what module?

® Makes it very difficult to understand someone
else's code if you need to locate the original
definition of a library function

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-5]

Main Module

® Python has no "main” function or method
® |nstead, there is a "main” module

® |t's simply the source file that runs first

bash % python3 foo.py

® Whatever module you give to the interpreter
at startup becomes "main”

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-52

-~ main check

® |t is standard practice for modules that can

run as a main program to use this convention:
foo.py

if name == ' main
Running as the main program

statements

® Statements enclosed inside the if-statement
become the "main" program

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-53

Locating Modules

® Modules are loaded from directories on a
special module search path (sys.path)

>>> import sys

>>> sys.path

[
'/usr/local/lib/python36.zip',
'/usr/local/lib/python3.6"',
'/usr/local/lib/python3.6/plat-darwin’,
'/usr/local/lib/python3.6/lib-dynload’,
'/usr/local/lib/python3.6/site-packages']

>>>

® Most ImportError exceptions are due to
issues with the path and/or filenames

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-54

Module Search Path

® sys.path contains search path

® Can manually adjust if you need to

import sys
sys.path.append('/project/foo/pyfiles"')

® Paths also added via environment variables

% env PYTHONPATH=/project/foo/pyfiles python3

Python 3.6.1 (default, Mar 24 2017, 17:58:49)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.38)]
>>> import sys

>>> gys.path

['', '/project/foo/pyfiles', ...,]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-55

Summary

® This has been an overview of basics

® [f you've already been programming Python for
awhile, you should already know this material

® |ater sections go into much more depth

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, |-56

Exercise |.6

Time: 5 minutes

|-57

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Section 2

Data Handling

Core Topics

® Data structures

® Containers and collections
® |teration

® Understanding the builtins

® Object model

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Data Structures

® Real programs must deal with complex data
® Example: A holding of stock

100 shares of GOOG at $490.10

® An "object” with three parts
® Name ("GOOG", a string)

® Number of shares (100, an integer)

® Price (490.10,a float)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-

3

Data Structures

® Some options
® Tuple
® Dictionary
® (Class instance

® |et's take a short tour

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2- 4

Tuples

® A collection of values packed together

s = ('GOOG', 100, 490.1)

® Can use like an array

name = s[0]
cost = s[1l] * s[2]

® Unpacking into separate variables

name, shares, price = s

® |[mmutable

s[1l] = 75 # TypeError. No item assignment

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Dictionaries

® An unordered set of values indexed by "keys"

s = {
'name’ : 'GOOG',
'shares' : 100,
'price' : 490.1
}

® Use the key name to access

s['name']
s['shares'] * s['price']

name
cost

® Modifications are allowed

s['shares'] = 75
s['date'] = '7/25/2015"
del s['name’]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

User-Defined Classes

® A simple data structure class

class Stock:
def init (self, name, shares, price):
self.name = name
self.shares = shares

self.price = price

® This gives you the nice object syntax...

>>> s = Stock('GOOG', 100, 490.1)
>>> s.name

'GOOG'

>>> s.shares * s.price

49010.0
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Variations on Classes

® (Class definitions have some variants
® Slots - Saves memory
® Dataclasses - Reduces coding
® Named tuples - Immutability/tuple behavior

® |et's take a quick tour

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-8

Classes and Slots

® For data structures, consider adding __ slots

class Stock:
slots = ('name', 'shares', 'price')
def init (self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

® Slots is a performance optimization that is
specifically aimed at data structures

® Greatly reduces the memory usage

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Dataclasses

from dataclasses import dataclass

@dataclass

class Stock:
name : str
shares : int

price: float

® Possibly a convenience for reducing the amount
of code that must be written

® Some useful methods get created automatically

® However, types are NOT enforced

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Named Tuples

® Another variant on class definition
import typing
class Stock(typing.NamedTuple):
name: str

shares: int
price: float

® Alternate formulation (in older code)

from collections import namedtuple

Stock = namedtuple('Stock’',
['name', 'shares', 'price'])

® Main feature: immutability

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Named Tuples

® Named tuples have same features as tuples
(immutability, unpacking, indexing, etc.)

>>> s = Stock('GOOG', 100, 490.1)
>>> s[0]

'GOOG'

>>> name, shares, price = s

>>> print('%10s %104 %10.2f' % s)

GOOG 100 490.10
>>> isinstance(s, tuple)

True

>>> s.name = 'ACME'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 2.1

Time : 30 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-13

Containers

® Programs often have to work many objects

® Lists (ordered data)

® Sets (unordered data, no duplicates)
® Dictionaries (unordered key-value data)

® The choice depends on the problem

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-14

Lists

® Use a list when the order of data matters

® Example: A list of tuples

portfolio = |
('GOOG', 100, 490.1),
('IBM', 50, 91.1),
('CAT', 150, 83.44)

]

portfolio[0] —> ('GOOG', 100, 490.1)
portfolio[l] —— ('IBM', 50, 91.1)

® |ists can be sorted and rearranged

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Sets

® A setis an unordered collection of unique items

a = {'IBM','AA', 'AAPL' }

® Sets eliminate duplicates

names = ['IBM', 'YHOO',6 'IBM', 'CAT', 'MSFT', 'CAT', 'IBM']
unique names = set(names)

® Sets are useful for membership tests

members = set()

members.add(item) # Add an item
members.remove(item) # Remove an item

if item in members: # Test for membership

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Dicts

® Useful for indices and lookup tables

prices = {
'GOOG' : 513.25,
'"CAT' : 87.22,
"IBM' : 93.37,
"MSFT' : 44.12

}
® Common use

p = prices['IBM']
p = prices.get('AAPL', 0.0)
prices['HPE'] = 37.42

if name in prices:

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Value lookup

Lookup with default value

Assignment

Membership test

2-17

Dicts, Composite Keys

® Use tuples for multi-part keys

prices = {

('ACME', '2017-01-01") : 513.25,
('ACME', '2017-01-02") : 512.10,
('ACME , 2017-01-03") : 512.85,
("
(

(

SPAM', '2017-01-01") : 42.1,
'S AM','2017-01-02") : 42.34,
'SPAM', '2017-01-03") : 42.87,
}
® Usage:

p = prices['ACME', '2017-01-01"]
prices['ACME', '2017-01-04"'] = 515.20

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-18

Comprehensions

® |ist comprehension

[expression for item in sequence if condition]

® Set comprehension

{ expression for item in sequence if condition }

® Dict comprehension

{ key:value for item in sequence if condition }

® These often simplify the creation of lists, sets,
and dictionaries from existing data

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Comprehensions

® General syntax

[expression for item in sequence if condition]

® VWhat it means

result = []
for item in sequence:
if condition:
result.append(expression)

® Similar for set and dict comprehensions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-20

Comprehension Examples

® Collecting values from data

names = [s['name'] for s in portfolio]

® Unique values

unique names = {s['name’'] for s in portfolio}

® Performing database-like queries

results = [s for s in portfolio if s['price']l > 100
and s['shares'] > 50]

® Quick mathematics over sequences

cost = sum([s['shares']*s['price'] for s in portfolio])

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-21

Collections Module

® Provides some variations on common data
structures (useful for specialized problems)

® defaultdict
® Counter
® deque

® ...and more

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-22

defaultdict

® Automatic initialization of missing dict keys

from collections import defaultdict

>>> d = defaultdict(list)
>>> d

defaultdict(<class 'list'>, {})
>>> d['x"]
[]

>>> d

defaultdict(<class 'list'>, {'x': []1})
>>>

® Allows combined operations
>>> d['y'].append(42)
>>> d['y']
[42]
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-23

Counter

® A dictionary specialized for counting items

from collections import Counter

>>> totals = Counter|()

>>> totals['IBM'] += 20

>>> totals['AA'] += 50

>>> totals['ACME'] += 75

>>> totals

Counter({'ACME': 75, 'AA': 50, 'IBM': 20})
>>>

® Has some other nice features (i.e., ranking)

>>> totals.most common(2)
[('ACME', 75), ('AA', 50)]
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-24

deque

® Double-ended queue

from collections import deque

>>> q = deque()

>>> q.append (1)

>>> q.append(2)

>>> qg.appendleft(3)
>>> q.appendleft(4)
>>> q

deque([4, 3, 1, 2])
>>> q.pop ()

2

>>> q.popleft ()

4

>>>

® More efficient than a list for queuing problems

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-25

Keeping a History

® Problem: Keep a history of the last N things

linel

--
o

g line4 g history = [line3, line4, line5]

o
--

® Solution: Use a deque

from collections import deque

history = deque(maxlen=N)
with open(filename) as f:
for line in f:
history.append(line)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-26

Multi-Search

® Problem: Search multiple places

techs = { auto = {
'IBM': 91.23, 'GM': 23.45,
"AAPL': 123.45, 'TM': 87.20,
'"HPE': 34.23 'F': 51.1,
} '"TTA': 64.45,
}

® Solution: ChainMap

from collections import ChainMap
allprices = ChainMap(techs, auto)

>>> allrices['HPE']
34.23

>>> allprices['F']
51.1

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-27

Commentary

® collections is a useful module to know
® Simplifies many common data handling problems

® [f you're not using it, you're missing out

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-28

Exercise 2.2

Time : 45 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-29

lteration

® The for-loop iterates over a sequence

>>> names = ['IBM', 'YHOO', 'AA', 'CAT']
>>> for name in names:
print (name)
IBM
YHOO

AA

CAT
>>>

® |t seems simple enough...

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-30

Iterating on Tuples

® Consider a list of tuples

portfolio = [

('GOOG', 100, 490.1),
IBM' 50, 91.1),
CAT', 150, 83.44),
'IBM', 100, 45.23),
'GOOG', 75, 572.45),

('
(
(
(
('AA', 50 23.15)

]
Iteration with unpacking

for name, shares, price in portfolio:

Iteration with a "throwaway" value (use)

for name, , price in portfolio:

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-31

Iterating on Varying Records

® Consider a list of varying sized data structures

prices = |
['GOOG', 490.1, 485.25, 487.5 1],
['IBM', 91.5],
['HPE', 13.75, 12.1, 13.25, 14.2, 13.5],
['CAT', 52.5, 51.2]

]

® Wildcard unpacking (Python 3 only)

for name, *values in prices:
print (name, values)

name values

'GOOG' [490.1, 485.25, 487.5]

'IBM' [91.5]

"HPE' [13.75, 12.1, 13.25, 14.2, 13.5]
'CAT' [52.5, 51.2]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-32

zip() function

® |terate on multiple sequences in parallel

['name', 'shares’', 'price']
['GOOG',100, 490.1]

columns
values

for colname, val in zip(columns, values):

Loops with colname='name' val="'GOOG'
colname="'shares' val=100
colname='price' wval=490.1

® Common use: Making dictionaries

record = dict(zip(columns,values))

® Caution: Truncates to shortest input length

zip(['a','b','c'], [112])_)('51'! 1), ('b'r 2)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-33

Keeping a Running Count

® enumerate(sequence [, start])

names = ['IBM', 'YHOO', 'CAT']
for n, name in enumerate(names):
Loops with n=0 name='IBM'
n=1 name='YHOO'
n=2 name='CAT'

® Example: Line number tracking on a file

with open(filename) as f:
for lineno, line in enumerate(f, start=1l):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-34

Iterating on Integers

® range([start,] end [,step])

for i in range(100):
#1i=0,1,...,99

for j in range(10,20):
3 =10,11,..., 19

for k in range(10,50,2):
k = 10,12,...,48

® Note: The ending value is never included

® Caution: range() is often a "code smell” for
problems being solved the "hard way"

2-35

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Sequence Reductions

® sum(s), min(s), max(s)

>>>s = [1, 2, 3, 4]
>>> sum(s)

10

>>> min(s)

1

>>> max(s)

4

>>>

® Boolean tests: any(s), all(s)

>>> s = [False, True, True, False]
>>> any(s)

True

>>> all(s)

False

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-36

Unpacking lterables

® Consider these iterables

® Making lists and tuples (Python 3.5+)

C
d

[*a, *b] # C
(*a, *b) # d

[1, 2, 3, 4, 5] (list)
(1, 2, 3, 4, 5) (tuple)

® |t's subtle, but maybe better than using +

>> c =a + b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate tuple (not "list") to tuple
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-37

Unpacking Dictionaries

® Consider these dicts

{ 'mame': 'GOOG', 'shares': 100, 'price':490.1 }
{ 'date': '6/11/2007', 'time': '9:45am' }

a
b

® Combining into a single dict (Python 3.5+)
c = { **a, **Db }
>>> ¢
{ 'name': 'GOOG', 'shares':100, 'price': 490.1,

'date': '6/11/2007, 'time': '9:45am' }
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-38

Argument Passing

® |terables can expand to positional args

a= (1, 2, 3)
b = (4, 5)
func(*a, *b) # func(1,2,3,4,5)

® Dictionaries can expand to keyword args
c ={'x"':1, 'y': 2}

func(**c) func(x=1, y=2)

® Combinations fine as long as positional go first

func(*a, **c)
func(*a, *b, **c)
func(0, *a, *b, 6, spam=37, **C)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-39

Generator Expressions

® A variant of a list comprehension that
produces the results via iteration

® Slightly different syntax (parentheses)

nums = [1,2,3,4]
squares = (x*x for x in nums)

® Use iteration to get the results

for n in squares:

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-40

Generators

® A generator can only be consumed once

® Example:

>>> nums = [1,2,3,4]
>>> squares = (x*x for x in nums)
>>> for n in squares:

print(n, end=' ')

1 4 9 16
>>> for n in squares:
print(n, end=' ')

< notice no output (spent)

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-4|

Using Generators

® (Generators are useful in contexts where
the result is an intermediate step

® For example:

def sumsquares(nums):
squares = (x*x for x in nums)
total = sum(squares)
return total

® Observe: squares is a temporary value--
no need to make a list

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-42

Generator Arguments

® (Generators expressions are sometimes

embedded as a function argument

sum(x*x for x in nums)

print(','.join(str(x) for x in items))

if any(name.endswith('.py') for name in filenames):

® |t acts as a filter/transform on an iterable

sum(x*x for x in nums)

nums

—

X*xX

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

sum

2-43

Generator Functions

® A function that feeds iteration

def squares(nums):
for x in nums:
yield x*x # Emit a value

® TJo get the results, use iteration

for n in squares:

® This a more general form that can be used if
the iteration processing is more complicated

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-44

Exercise 2.3

Time : |0 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-45

Secrets of the Builtins

® Programmers use the built-in types without
giving them much thought

® However, they have some subtle behavior
that is worth knowing about

® Especially if you want to write better code

2-46

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

What is a Builtin?

® An object that's part of the Python interpreter

® Usually implemented entirely in C

® |n some sense, the most primitive kind of
object that you can use in a program

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-47

Under the Hood

® All objects have an id, class and a reference count

id —

class » class Something:
refcount def method a(self):
def method b(self):
a = Something()
b = a
C = [eee, @, «o.]

® The id is the memory address

® The class is the "type”

® Reference count used for garbage collection

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-48

Builtin Representation

® None (a singleton)

class

refcount

® float (64-bit double precision)

class

refcount

value

(16 bytes)

(24 bytes)

® int (arbitrary precision)

class

refcount

size

digits

digits

(28-??? bytes)

digits stored in
30-bit chunks

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-49

String Representation

class

refcount
length
hash
flags
meta

(48 or 72 bytes)

Varies (l-byte per char for ASCII)

data null terminated (\x00)

® Strings adapt to Unicode (size may vary)

>>> a = 'n'

>>> b = 'n'

>>> sys.getsizeof (a)
50

>>> sys.getsizeof (b)
74

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-50

Memory Overhead

® There is inherent memory overhead

® Can investigate with sys.getsizeof()

>>> import sys

>>> a = 2

>>> sys.getsizeof(a)
28

>>> b = 2.5

>>> sys.getsizeof (b)

24

>>> ¢ = '2.5"

>>> sys.getsizeof(c)
52

>>>

® A big part of memory use in earlier exercises

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-51

Operation of the Builtins

® The builtin types operate according to
predefined "protocols” (special methods)

>>> a = 2

>>> b = 3

>>> a + b

5

>>> a.__add__ (b) # Protocol
5

>>> ¢ = 'hello'

>>> len(c)

5

>>> c.__len_ () # Protocol
5

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-52

Object Protocols

® The object protocols are baked into the
interpreter at a very low level (byte code)

>>> def f£(x, y):
return x + y

>>> import dis
>>> dis.dis(f)
2 0 LOAD FAST 0 (x)
2 LOAD FAST 1 (y)
4 BINARY ADD

6 RETURN VALUE hardwired

>>>

def add (self, other):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-53

Making New "Builtins”

® Awareness of protocols allows you to make
new objects that behave like the builtins

® Example: decimals, fractions

>>> from fractions import Fraction
>>> a = Fraction(2, 3)

>>> b = Fraction(1l, 2)

>>> a + b

Fraction(7, 6)

>>> a > 0.5

True

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-54

Exercise 2.4

Time : 30 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-55

Container Representation

® Container objects only hold references
(pointers) to their stored values

items = [a, b, ¢, d, e] # A list

N

pointer array

TTTT]
EEEEE

® All operations involving the container internals
only manipulate the pointers (not the objects)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-56

Over-allocation

® All mutable containers (lists, dicts, sets)
tend to over-allocate memory so that there
are always some free slots available

used reserved
NERR
00000

® This is a performance optimization

list

® (Goal is to make appends, insertions fast

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-57

Example : List Memory

® Example of list memory allocation

items = []

items.append(1) L1l T T 1]
items.append(2) [IT ZII] «— reserved
items.append(3) 1] 21T 3T 1 space
items.append(4) 1] 21 3] 4] l
items.append(6) L 11 21 31 41 51 61 | 1|
items.append(7) (112131 4751 61 7]

® Extra space means that most append()
operations are very fast (space is already
available, no memory allocation required)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-58

Container Growth

® Memory use of containers grows in proportion
to the number of stored values

® Lists :Increase by ~12.5% when full
® Sets : Increases by factor 4 when 2/3 full

® Dicts : Increases by a factor 2 when 2/3 full

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-59

Set/Dict Hashing

® Sets and dictionaries are based on hashing

® Keys are used to determine an integer
"hashing value" (___hash__ () method)

'"Python’
'"Guido'
'Dave’

a
b
C

>>> a.__hash__ ()
-539294296
>>> b. hash__ ()
1034194775
>>> c.__hash__ ()
2135385778

® Value used internally (implementation detail)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-60

Key Restrictions

® Sets/dict keys restricted to “hashable” objects

>>> a = {'IBM', 'AA', 'AAPL'}

>>> b = {[1,2],[3,4]}

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

>>>

® This usually means you can only use strings,
numbers, or tuples (no lists, dicts, sets, etc.)

® Requires hash ()and __eq () methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-61

Dict Layout

® Hashing in a nutshell....

__hash__ () % isize index entries
s = { o | 'name ', ' GOOG'
'name’': 'GOOG', 15034981 5 -~ " 100
'shares': 100, —>128723118 —> 6 (e
'price': 490.1 ~1236194358 2 2 price',490.1
}
o |)
® There's a list of entries 1

(preserves insertion order)

® A hashed index (holds entry positions)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-62

Collision Resolution

® Hash index is perturbed until an open slot found

key='name'

h key. hash () -> 15034981
i h $ isize -> 5

® Recurrence

i, h = perturb(i, h, size)

® Every slot is tried eventually

entry index

OCCUPIED

® Works better if many open slots available

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

<N o O W NN R O

2-63

Container Protocols

® Containers also work through "protocols”
>>a=['x",'y','2"]
>>> a[l]
'y
>>> a. getitem (1) # Protocol
'y
>>> 'z' in a
True
>>> a. contains_ ('z') # Protocol

True
>>>

® You can make custom container objects by
implementing the required methods

® Examples: numpy, Pandas, etc.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-64

Container Taxonomy

® For new containers, consider collections.abc

Mapping, MutableMapping
Sequence, MutableSequence
Set, MutableSet

® Use these as a base class

class MyContainer(collections.abc.MutableMapping):

® Forces you to implement required methods

>>> ¢ = MyContainer|()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class MyContainer

with abstract methods delitem , getitem , iter ,
__len , setitem
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-65

Exercise 2.5

Time : 25 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-66

Understanding Assignment

® Many operations in Python are related to
"assigning” or "storing" values

a = value # Assignment to a variable
s[n] = value # Assignment to an list

s .append(value) # Appending to a list

d['key'] = value # Adding to a dictionary

® A caution :assignment operations never
make a copy of the value being assigned

® All assignments are merely reference copies
(or pointer copies if you prefer)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-67

Assignment Example

® Consider this code fragment:

a=1_[1,2,3]
b =a
c = [a,b]

® A picture of the underlying memory

ref = 4

n a n

- There is only one list object
"b"/ [1,2,3], but there are four
n C ")

different references to it.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-68

Assignment Caution

® Modifying a value affects all references

>>> a.append(999)

>>> a

[1,2,3,999]

>>> b

[1,2,3,999]

>>> ¢

(ri,2,3,9991, [1,2,3,999]]
>>>

® Notice how a change to the original list
shows up everywhere else (yikes!)

® This is because no copies were ever made--
everything is pointing at the same thing

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-69

Call by Object

® Objects are never copied on function call

def func(items):
items.append(42)

>>> a = [1,2,3]

>>> func(a)
>>> a

[ll 2, 3, 42]
>>>

® Mutations affect the original object

® Reminder: many objects are immutable

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-70

Reassigning Names

® Reassighing a name never overwrites the
memory used by the previous value

n_n f = 2
[1,2,3] ® \re
a "b”/

ref =1
a = [4,5,6] g ——>
ref =1
e

® The name now refers to a different object

(oF

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-71

ldentity and References

® Use the "is" operator to check if two
values are exactly the same in memory

>>> a = [1,2,3]
>>> b = a

>>> a is b
True

>>>

® Every object also has an integer identifier

>>> 1d(a) The object identifier is kind of like

izzll?gob a pointer. If two names have the

2774;6(()) same id value, they're referring to
the same object.

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-72

Exploiting Immutability

® |mmutable values can be safely shared
portfoliq =

{?name“? 'AA', 'price': 32.2, 'shares': 100},
ﬁ'name'% 'IBM', 'price': 91.1, 'shares': 50},
{'name's 'CAT!, 'price': 83.44, 'shares': 150},
{'name's !MSFT%, 'price': 51.23, 'shares': 200},
: R GETT price': 40.37, 'shares': 95},
'price': 65.1, 'shares': 50},

rice': 70.44, 'shares': 100}

.,

® Sharing can save significant memory

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-73

Shallow Copies

® Containers have methods for copying

>>> a = [2,3,[100,101],4]

>>> b = list(a) # Make a copy
>>> a is b
False

® However, items are copied by reference

>>> a[2] .append(102) a

- L
>>> b[2] \
[100,101,102] (///f;;;?/ l

2 3 100|101 (102 4

>>>
This inner list is >§ I //

still being shared

® Known as a "shallow copy"

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-74

Deep Copying

® Sometimes you need to makes a copy of an
object and all objects contained within it

® Use the copy module

>>> a = [2,3,[100,101],4]
>>> import copy

>>> b = copy.deepcopy(a)
>>> a[2] .append(102)

>>> b[2]

[100,101]

>>>

® This is the only safe way to copy something

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-75

Everything is an object

® Numbers, strings, lists, functions,
exceptions, classes, instances, etc...

® All objects are said to be "first-class”

® Meaning: All objects that can be named can
be passed around as data, placed in
containers, etc., without any restrictions.

® There are no "special” kinds of objects

2-76

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Example: Emulating Cases

A big conditional Reformulation using a
with many cases dict of functions
if op == '+':
ops =

elif op == '-": Co sub,

r = sub(x, y): » - mu1,
elif op == '*';: e) 4 !

r = mul(x, y): Poav
elif op == '/': }

r = div(x, y): r = ops[op](X,Y)

® Key idea: Can make data structures from anything

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 2-77

Exercise 2.6

Time : 25 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

2-78

Section 3

Classes and Obijects

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-

When to use Objects?

® Object oriented programming is largely
concerned with the modeling of "behavior."

® An "object” consists of some internal state,
but more importantly, has methods that make
it do various things.

® The methods give an object its personality

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-

2

An Example

® Data

host = ('www.python.org', 80)

® Behavior

= Connection('www.python.org',80)
.open()

.send(data)

.recv()

.close()

Q Q Q QQ

® Data and behavior are bound together

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-3

The class statement

® Use 'class’ to define a new object

class Player:
def init
self.x X
self.y y

self.health = 100

(self, x, y):

def move(self, dx, dy):
self.dx += dx
self.dy += dy

def damage(self, pts):
self.health -= pts

® VWhat is a class!?

® Mostly, it's a set of functions that carry out
various operations on so-called "instances”

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3- 4

Instances

® |nstances are the actual "objects” that you
manipulate in your program

® Created by calling the class as a function

>>> a
>>> b
>>>

Player (2, 3)
Player (10, 20)

® Emphasize: The class statement is just the
definition (it does nothing by itself)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-5

Instance Data

® Each instance has its own local data

>>> a.xX

2

>>> b.x

10

® This data is initialized by __init_ ()

class Player:

def

Any value
stored on "self"
is instance data

___init (self, x, y):
self.x = x
self.y =y

self.health = 100

® There are no restrictions on the total
number or type of attributes stored

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3- 6

Instance Methods

® Functions applied to instances of an object

class Player:

def move(self, dx, dy):
self.x += dx
self.y += dy

® The object is always passed as first argument
>>> a.move(l, 2)

def move(self, dx, dy):

® By convention, the instance is called "self"

The name is unimportant---the object is always passed as the first

argument. It is simply Python programming style to call this
argument "self."

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-7

Attributes

® A word on terminology

® "Attribute” is anything accessed via (.)

>>> a.x # Attribute of an instance
2
>>> Player.move # Attribute of a class

<function Player.move at 0x10e7f£6400>

>>> import math
>>> math.pi # Attribute of a module

® Don't read too much into it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-8

History Lesson

® Python classes were one of the last major
features implemented in the language

® Design goals included no changes in syntax
(other than the class statement itself) and no
changes to function scoping rules

® Hence :Instance methods are normal
function definitions that simply receive the
instance as the first argument (self)

® That's it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-

9

Class Scoping

® Caution: Classes do not define a scope

class Player:

def move(self, dx, dy)é
self.x += dx ™
self.y += dy

‘&Qﬁ left(self, amt):

. move(-amt, O0) yg’ # NO. Calls global move()

self.move(-amt, 0) # YES.

® |f want to operate on an instance, you always

have to refer to it explicitly (e.g., self)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-10

Exercise 3.1

Time : 20 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-11

Manipulating Instances

® There are only three operations on instances

obj.attr # Get an attribute
obj.attr = value # Set an attribute
del obj.attr # Delete an attribute

® Attributes can be freely added and deleted
after an instance is created

>>> s = Stock('ACME', 50, 91.1)
>>> s.shares

50

>>> s.date = '10/31/2017" # Add an attribute
>>> del s.name # Delete an attribute
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-12

Attribute Access Functions

® These functions may be used to manipulate
attributes given an attribute name string

getattr(obj, 'name') # Same as obj.name
setattr(obj, 'name', value) # Same as obj.name = value
delattr(obj, 'name') # Same as del obj.name
hasattr(obj, 'name') # Tests if attribute exists

® Example: Output

attributes = ['name', 'shares', 'price']
for attr in attributes:
print(attr, '=', getattr(obj, attr))

® Note: getattr() has a useful default value arg

x = getattr(obj, 'x', None)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-13

Method Invocation

® |nvoking a method is a two-step process

® | ookup: The .operator

® Method call: The () operator

class Stock:

def cost(self):
return self.shares * self.price

>>> s = Stock('ACME', 50, 91.1)

>>> ¢ = s.cost « LOOkUP

>>> ¢

<bound method Stock.cost of <Stock object at 0x590d4d0>>
>>> ¢()

4555.0

cos — Method call

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-14

Bound Methods

® A method that has not yet been invoked by the

function call operator () is known as a "bound
method"

® |t operates on the instance where it originated

>>> s = Stock('ACME', 50, 91.1)
>>> g

<Stock object at 0x590d0>
>>> ¢ = s.cost

binding
>>> ¢ 55“-~§§)
<bound method Stock.cost of <Stock object at 0x590d0>>
>>> ¢ ()
4555.0
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Bound Methods

® Why would you care!?

® Often a source of careless non-obvious errors
>>> s = Stock('ACME’', 50, 91.1) .. Note missing ()
>>> print('Cost : %0.2f' % s.cost) f"”’
Traceback (most recent call last): "
File "<stdin>", line 1, in <module>

TypeError: a float is required
>>>

® Or devious behavior that's hard to debug

f = open(filename, 'w')

f.closei :«—— Oops.Didn't do anything at all

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 3.2

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-17

More on Class Definitions

® A class contains definitions that are shared
by all instances of the class

class Stock:
def init (self, name, shares, price):

self.name = name
self.shares = shares
self.price = price

def cost(self):
return self.shares * self.price

® Shared : Defined once, used by all instances

® Example :There is one cost() function that
gets used by all instances created

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-18

Class Variables

® Classes may also define variables

® Known as "class variables"

class SomeClass:
debug = False
def 1init (self, x):

self.x = x

® There are two access routes

>>> SomeClass.debug (On the class itself)

False

>>> s = SomeClass (42)

>>> s.debug (On an instance of the class)
False

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-19

Using Class Variables

® Often used for settings applied to all instances

class Date:
datefmt = '{year}-{month}-{day}’
def init (self, year, month, day):
self.year = year
self.month = month
self.day = day
def str (self):
return self.datefmt.format(year=self.year,
month=self .month,
day=self.day)

® Possibly changed via inheritance

class USDate(Date):
datefmt = '{month}/{day}/{year}"’

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-20

Class Methods

® A method that operates on the class itself

class SomeClass:

@classmethod

def yow(cls):
print('SomeClass.yow', cls)

® |t's invoked on the class, not an instance

>>> SomeClass.yow()
SomeClass.yow <class ' main .SomeClass'>
>>>

® The class is passed as the first argument

(_SomeClass:yow() @classmethod
.. dof yow(cls):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-2|

Using Class Methods

® (Class methods are often used as a tool for
defining alternate initializers

class Date:
def init (self, year, month, day):

self.year = year

self.month = month

self.day = day
@classmethod

def today(cls):
tm = time.localtime()
return cls(tm.tm year, tm.tm mon, tm.tm mday)

Notice how the class passed

as an argument.
d = Date.today()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-22

Using Class Methods

® Class methods solve some tricky problems
with features like inheritance

class Date:

@classmethod
def today(cls):
tm = time.localtime()
return cls(tm.tm year, tm.tm mon, tm.tm mday)

class NewDate(Dat;??\\\\\\\

d = NewDate.today()

Gets the correct class
(e.g., NewDate)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-23

Static Methods

® A function that's defined as part of a class, but
does not operate on instances or the class

class SomeClass:
@staticmethod
def yow():
print('SomeClass.yow')

® Example:

>>> SomeClass.yow()

SomeClass.yow
>>>

® Notice: There is no hidden self argument

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-24

Using Static Methods

® Uses vary:
e Utility functions used by various methods
® |nstance management/tracking
® Finalization, resource management
® Certain design patterns

® Might improve code clarity--grouping related
functionality together within a class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-25

Exercise 3.3

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-26

Classes and Encapsulation

® One of the primary roles of a class is to
encapsulate data and internal
implementation details of an object

® However, a class also defines a "public”
interface that the outside world is supposed
to use to manipulate the object

® This distinction between implementation
details and the public interface is important

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-27

Python Encapsulation

® Python relies on programming conventions to
indicate the intended use of something

® Typically, this is based on naming

® There is a general attitude that it is up to the
programmer to observe the rules as opposed to
having the language enforce rules

3-28

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Private Attributes

® Any attribute name with a leading _ is
considered to be "private”

class Base:
def init (self, name):

self. name = name

® However, this is only a programming style

® You can still access it

>>> b = Base('Guido’)
>>> b. name

'Guido’

>>> b. name = 'Dave’
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-29

Complication

® Are "private” attributes visible to subclasses?

class Base:
def init (self, name):
self. name = name

class Child(Base):
def spam(self):
print('Spam', self. name)

® As a general rule, this is accepted practice

® Subclasses often extend/enhance the
functionality of the parent (may need attributes)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-30

Avoiding Name Collisions

® Variant :Attribute names with two leading

class Base:
def init (self, name):

self. name = name

® Attribute is not visible in subclasses

class Child(Base):
def spam(self):
print('Spam’', self. name) # AttributeError

® |mplemented as a name mangling trick

>>> b = Base('Guido')
>>> b. Base__ name
'Guido’

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-3]

Problem: Simple Attributes

® Consider the following class

class Stock:
def init (self, name, shares, price):
self.name = name
self.shares = shares

self.price = price

s = Stock('GOOG', 100, 490.1)
s.shares = 50

® Suppose you later wanted to add validation

s.shares = '50' # --> TypeError

® How would you do it!

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-32

Managed Attributes

® You might introduce accessor methods

class Stock:
def init (self, name, shares, price):
self.name = name
self.set shares(shares)
self.price = price

set operations on top of
def get shares(self): / a private attribute

return self. shares /

functions that layer get/

def set shares(self, value):
if not isinstance(value, int):
raise TypeError('Expected an int')
self. shares = value

® TJoo bad this breaks all existing code

s.shares = 50 ——> s.set _shares(50)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-33

Properties

® An alternative approach to accessor methods

class Stock:
def init (self, name, shares, price):
self.name = name
self.shares = shares

self.price = price

@property
def shares(self):
return self. shares

@shares.setter
def shares(self, value):
if not isinstance(value, int):
raise TypeError('Expected int')
self. shares = value

® The syntax is a little jarring at first

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-34

Properties

® Normal attribute access triggers the methods

class Stock:
def init (self, name, shares, price):
self.name = name
self.shares = shares

self.price = price

e N
>>> s = Stock(...)

get
- >>> s.shares
@property 100
def shares(self): >>> s.shares = 50

return self. shares set S>>

/)
@shares.setter (,,——”””

def shares(self, value):
if not isinstance(value, int):
raise TypeError ('Expected int')
self. shares = value

® No changes needed to other source code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-35

Properties

® You don't change existing attribute access

class Stock:
def init

(self, name, shares, price):

self.shares = shares
@property
def shares(self):

return self. shares

assignment @shares.setter
calls the setter def shares(self, value):
if not isinstance(value, int):
raise TypeError ('Expected int')
self. shares = value

® Common confusion: property vs private name

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3- 36

Properties

® Properties are also useful if you are creating
objects where you want to have a very
consistent programming interface

® Example : Computed data attributes

class Stock:
def 1init (self, name, shares, price):
self.name = name
self.shares = shares

self.price = price
@property

def cost(self):
return self.shares * self.price

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-37

Properties

® Example use:

>>> s = Stock('ACME', 50, 91.1)

>>> s.name <€ Instance Variable

' ACME "

>>> s.cost < Computed Property
4555.0

>>>

® Commentary : Notice how there is no
obvious difference between the attributes as
seen by the user of the object

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-38

- slots Attribute

® You can restrict the set of attribute names

class Stock:
_slots = ('name', 'shares', 'price')

® Produces errors for other attributes

>>> s = Stock('ACME', 50, 91.1)
>>> s.shares = 75
>>> s.share = 75
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: 'Stock' object has no attribute 'share'

® This is a performance optimization (uses less
memory, runs faster)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-39

~slots Cautions

® slots should only be used sparingly

® Be aware that it's presence can cause strange
interaction with other parts of Python that
are related to objects

® Advice : Do not use it except with classes
that are simply going to serve as simple data
structures

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-40

Commentary

® The features described so far cover virtually
everything that you will see in most Python
class definitions

® Essential pieces
® |nstance data (assignmentin __init__)
® Methods (instance, static, class)
® Properties

® Private attributes, _ slots

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-41

Exercise 3.4

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-42

Inheritance

® A tool for specializing existing objects

class Parent:

class Child(Parent):

® New class called a derived class or subclass
® Parent known as base class or superclass

® Parent is specified in () after class name

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-43

Inheritance

® What do you mean by "specialize?”
® Take an existing class and ...
® Add new methods
® Redefine some of the existing methods

® Add new attributes to instances

® |n a nutshell: Extending existing code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-44

Inheritance Example

® Adding a new method

class MyStock(Stock):
def panic(self):
self.sell(self.shares)

>>> s = MyStock('GOOG', 100, 490.1)
>>> s.sell(25)

>>> s.shares

75

>>> s.panic()

>>> s.shares

0
>>>

n

® You can give new capabilities to existing objects

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-45

Inheritance Example

® Redefining a method

class MyStock(Stock):
def cost(self):
return 1.25 * self.shares * self.price

>>> s = MyStock('GOOG', 100, 490.1)

>>> s.cost()

61262.5
>>>

® The new method takes the place of the old one

® Other methods are unaffected

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-46

Inheritance and Overriding

® Sometimes a class extends an existing method,
but it has to use the original implementation

class Stock:

def cost(self):
return self.shayes * self.price

class MyStock(Stock):
def cost(self):

actual cost = super().cost()
return 1.25 * actual_cost

® Use super() to call previous version

® Caution: Python 2 is different

actual cost = super(MyStock, self).cost()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-47

Inheritance and init

® With inheritance, you must initialize parents

class Stock:
def init (self, name, shares, price): <«

self.name = name
self.shares = shares

self.price = price

class MyStock(Stock):

def _ init _ (self, name, shares, price, factof):

super(). _init (name, shares, price)
self.factor = factor
def cost(self):

return self.factor * super().cost()

® Again, you should use super() as shown

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

e,
L
.....
.
.
.
.
.
.
.
O

3-48

is a’ relationship

® |nheritance establishes a type relationship

class Stock:
class MyStock(Stock):

>>> s = MyStock('ACME', 50, 91.1)
>>> isinstance(s, Stock)

True

>>>

® |mportant: objects defined via inheritance are a
special version of the parent (same capabilities)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-49

object base class

® Sometimes a class will use object as parent

class Stock(object):

® object is the parent of all objects in Python
(even if you don't specify it in Python 3)

® Note: There is some historical baggage with
Python 2 so it's common to see it in old code

3-50

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Multiple Inheritance

® You can specify multiple base classes

class Parentl:
class Parent2:

class Child(Parentl, Parent2):

® The new class inherits features from both parents

® But there are some really tricky details (later)

® Don't do it unless you understand it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-5]

Using Inheritance

® |nheritance is often used as a code
customization/extensibility feature

® For example, certain parts of a framework
might involve inheriting from an existing
class and redefining a handful of methods

® |dea: you add bits and pieces to existing
code to make it do custom processing

3-52

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 3.5

Time : 20 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-53

Special Methods

® Classes can customize almost every aspect
of their behavior

® This is done through special methods

class Point:
def init (self, x, y):

def str (self):

® There are dozens of these methods

® |nstead of showing every possible
customization, will show essential ones

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-54

String Conversions

® Objects have two string representations

>>> from datetime import date
>>> d = date(2012, 12, 21)
>>> print(d)

2012-12-21

>>> d

datetime.date (2012, 12, 21)
>>>

® str(x) - Printable output

>>> str(d)
'2012-12-21"
>>>

® repr(x) - For programmers

>>> repr(d)
'datetime.date(2012, 12, 21)°
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-55

String Conversions

class Date:
def 1init (self, year, month, day):
self.year = year
self.month = month

self.day = day

def str (self):
return '%d-%d-%d' % (self.year,
self.month,

self.day)

def repr (self):
return 'Date(%r,%r,%r)' % (self.year,
self.month,
self.day)

Note: The convention for __repr__ () is to return a string that, when
fed to eval() , will recreate the underlying object. If this is not possible,
some kind of easily readable representation is used instead.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-56

Methods: ltem Access

® Methods used to implement containers

len(x) X. _len ()

x[a] X. _getitem (a)
x[a] = v X. setitem (a,v)
del x[a] X. delitem (a)

a in x X. contains_(a)

® Definition in a class

class Container:
def len (self):

def getitem (self,a):

def setitem (self,a,v):

def delitem (self,a):

def @ contains_ (self,a):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-57

Methods: Mathematics

® Mathematical operators

a+b a. add__ (b)
a->, a. sub (b)

a *b a. mul (b)
a/ b a. div__ (b)
a// b a. floordiv (b)
a 3% b a. mod (b)

a <<b a. 1lshift (b)
a>>>o a. rshift (b)
a &b a. and (b)

a | b a. or (b)

a”~ b a. xor_ (b)

a ** b a. pow__ (b)

-a a. neqg_ ()

~a a. invert ()
abs (a) a. abs ()

® Consult reference for further details

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-58

Instance Creation

® |nstances are created in two steps

class Date:
def init (self, year, month, day):
self.year = year
self.month = month
self.day = day

d = Date(2012, 12, 21)

® Under the hood

d = Date. new (Date, 2012, 12, 21)
d. init (2012, 12, 21)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-59

Using new

® Sometimes you might use __new__ () directly

class Date:

@classmethod

def today(cls):
t = time.localtime()
self = cls. new__ (cls)
self.year = t.tm year
self.month = t.tm mon
self.day = t.tm mday
return self

d = Date.today()

® Creates an instance, but bypasses __init__ ()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-60

Defining new

® Classes may define __new_ ()

class A:
@staticmethod
def new (cls, x, y):
return super(). new (cls)

def___init__(self,_gj yf;_

® Not common, but sometimes used when
altering some tricky aspect of instance creation

® |nstance caching

® |mmutability

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-6|

~del method

® Classes might define a "destructor” method

class Connection:

def del (self):

Cleanup statements

® (Called when the reference count reaches O

® Confusion: Not related to “del” operator

c = Connection() # refcnt =1

d =c # refcnt = 2

del d # Doesn't call d. del () (refcnt = 1)
c = None # Calls c. del () (refcnt = 0)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-62

del method

® Typical uses:

® Proper shutdown of system resources (e.g.,
network connections)

® Releasing locks (e.g., threading)

® Avoid defining it for any other purpose

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-63

Weak References

® A weak reference is a reference to an object
that does not increase its reference count

® Sometimes this is desired in when there is a
complicated relationship between objects and
there are issues with memory management

® Supported by weakref library module

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-64

weakref module

® Creating a weak reference

>>> import weakref

>>> £ = Foo()

>>> fref = weakref.ref (f)

>>> fref

<weakref at 0x4203c0; to 'Foo' at 0x41dff0>

® Getting the object being pointed at

>>> g = fref () # Dereference
>>> print(g)
< _ main_.Foo object at 0x41dff0>

® |f object is dead, deference returns None

>>> g = fref ()
>>> print(g)
None

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-65

Using Weak References

® \Weak references are sometimes used where
there are reference cycles between objects

® Example : graphs, trees, observers, caches,etc.

® Not something you should consider unless
dealing with really tricky memory problems

® More features in the weakref module

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-66

Context Managers

® For resources, consider the use of the 'with'
statement instead of relying on __del ()

with obj as val: » val = obj. enter
statements
statements
statements

()

statements
» Oobj. exit (ty, val, tb)

® Allows you to customize entry/exit steps

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-67

Context Managers

® Example:

class Manager:
def @ enter (self):

print('Entering’')
return self

def __gxit__(sglf, ty, val, tb): Note: the ty, val, tb
print('Leaving') arguments have
if type: information about
print('An exception occurred') IZ?ndi';g exceptions
if any

® Example use:

>>> m = Manager ()
>>> with m:
print ('Hello World')

Entering
Hello World
Leaving

>>>
Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-68

Exercise 3.6

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-69

Code Reuse

® A major theme of object oriented
programming concerns code reuse and
making things extensible

® A big topic

® There are a number of common techniques

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-70

Interfaces

® (Classes often serve as a kind of design
specification or programming interface

class IStream:
def read(self, maxbytes=None):
raise NotImplementedError()
def write(self, data):
raise NotImplementedError()

® This class isn't used directly, but is usually
included as a base class for other objects

class UnixPipe(IStream):
def read(self, maxbytes=None):

def write(self, data):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-7|

Abstract Base Classes

® Consider defining interfaces as an abstract
base class (ABC) instead

from abc import ABC, abstractmethod

class IStream(ABC):
@abstractmethod
def read(self, maxbytes=None):

pass
@abstractmethod
def write(self, data):
pass

® Doesn't allow instantiation unless all of the
abstract methods have been fully implemented

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-72

Abstract Base Classes
® ABCs may simplify type checking

def write data(data, stream):

if not isinstance(stream, IStream):
raise TypeError('Expected a Stream')

® ABCs catch careless usage errors

class UnixPipe(IStream):
def recv(self, maxbytes=None):

def write(self, data):
pass

>>> p = UnixPipe()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class
UnixPipe with abstract methods read
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-73

Handler Classes

® Sometimes code will implement a general
purpose algorithm, but will defer certain steps
to a separately supplied handler object

® Sometimes known as the "strategy" design
pattern.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-74

Handler Classes

® Example:

def print table(records, fields, formatter):
formatter.headings(fields)
Calls to /for r in records:
rowdata = [getattr(r, fieldname, 'undef')

handler \ for fieldname in fields]
methods

formatter.row(rowdata)

® Notice how various steps of the algorithm are
deferred to a separate handler object

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-75

Handler Classes

® Handlers have their own class definition

class TableFormatter:
def headings(self, headings):
raise NotImplementedError
def row(self, rowdata):
raise NotImplementedError

® The handler only contains the methods that
need to be implemented/customizec

® |Important idea : Decoupling of the class that
produces the table from the handler methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-76

Handler Classes

® Example Use

class TextTableFormatter (TableFormatter):
def headings(self, headers):
for h in headers:
print('%10s' % h, end=' ")
print ()
print(('-" * 10 + ' ") * len(headers))
def row(self, rowdata):
for d in rowdata:
print('%10s' % d, end=' ")
print()

formatter = TextTableFormatter (handler)
print table(portfolio, ['name', 'shares'], formatter)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-77

Commentary

® The use of handler classes is extremely
common throughout the Python standard
library (might be the most popular OO
design pattern used in Python)

® Rationale : This approach provides flexibility

® Handlers are decoupled from implementation

® Allows handler code to be reused in other
contexts (other classes can use the same
handler objects).

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-78

Classes as a Template

® A class might implement a general-

purpose algorithm, but delegate certain
steps to a subclass

® Will illustrate with a simple example

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-79

Template Example

® A class that parses a CSV file into a list

class CSVParser:

def

Step that < def
must be

implemented

parse(self, filename):
records = []
with open(filename) as f:
rows = csv.reader(f)
self.headers = next(rows)
for row in rows:
record = self.make_record(row)
records.append(record)
return records

make record(self, row):
raise RuntimeError('Must implement')

® Note: Class is useless by itself

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-80

Template Example

® Using the template (use inheritance)

class DictCSVParser (CSVParser):
def make record(self, row):
return dict(zip(self.headers, row))

parser = DictCSVParser ()
portfolio = parser.parse(portfolio.csv')

® Critical idea : User defines a small class that
supplies the one missing piece, but most of
the real functionality is in the base class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-8]

Prefer Functions

® The template pattern is often overcomplicated

Consider a function + callback instead

def parse csv(filename, make record):
records = []
with open(filename) as f:
rows = csv.reader(f)
headers = next(rows)
for row in rows:
record = make record(headers, row)
records.append(record)
return records

def make record(headers, row):
User implements

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-82

Exercise 3.7

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-83

Advanced Inheritance

® Recall: Inheritance is a tool for code reuse
(customization and extension)

class Parent:
def spam(self):

class Child(Parent):
def spam(self):
print('Different Spam')
super () .spam()

® Child classes can customize their parents

® Sometimes see use of super() function (shown)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-84

Multiple Inheritance

® (Classes can have multiple parents

-
[:class A(object):] class C(object):]
cee T . cee

{class B(A):]

AN

[class D(B, C): }

® The child will inherit features from all parents

® But,it's a lot sneakier than this

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-85

Cooperative Inheritance

® Python uses "cooperative multiple inheritance”

® Big idea:A child class can specifically arrange its
parents to cooperate with each other

class Child(Parentl, Parent2, Parent3):

® The order of the parents has significance

® Attribute search may jump parent-to-parent

class Child(Parentl, Parent2, Parent3):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-86

Cooperative Inheritance

® Example: Consider this arrangement

s N
class Parent:

def spam(self):
print('Parent’)

. J
/ N
4 N [N
class A(Parent): class B(Parent):
def spam(self): def spam(self):

print('A") print('B")

super () .spam() super () .spam()
\. J J

® Now, this:
>>> ¢ = Child()
class Child(A,B): >>> c.spam()
pass A

"’/,//W'B
" . | Parent
it's gone sideways!
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-87

Cooperative Inheritance

® There are applications

-
&
.

« -
«
» -
“

® You can make collections of classes that are
meant to be stacked together to make more
interesting things

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-88

An Odd Code Reuse

class Dog:

return

return

def noise(self):

'"Woof'

def chase(self):

'Chasing!’

class LoudDog(Dog):
def noise(self):
return super()\

.noise() .upper()

class Bike:
def noise(self):
return 'On Your Left'

def pedal(self):
return 'Pedaling!'’

class LoudBike(Bike):
def noise(self):
return super()\

.noise() .upper()

A

® Completely unrelated objects

® But, there is a code commonality

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley,

h

ttps://www.dabeaz.com,

3-89

Mixin Classes

® A mixin is a class whose purpose is to add
extra functionality to other class definitions

® |dea: If a user implements some basic
features in their class, a mixin can be used to
fill out the class with extra functionality

® Sometimes used as a technique for reducing
the amount of code that must be written

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-90

Mixin Example

® A class with a fragment of code

class Loud:
def noise(self):
return super().noise().upper()

® Not usable in isolation

® Mixes with other classes via inheritance

class LoudDog(Loud, Dog):
pass

class LoudBike(Loud, Bike):
pass

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-9]|

How it works

® Example:
class LoudDog (Loud, Dgg):
pass \\-—"super()

>>> d = LoudDog()
>>> d.noise|()

'WOOF'
>>>

® super() moves to the next class

® Allows mixins to combine with arbitrary classes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 3-92

Use of Mixins

® Mixin classes are sometimes used as a way to
add optional features to more basic objects

® For example, added thread support,
bersistence, etc.

® User assembles an object from the different
parts that they're going to use

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-93

Exercise 3.8

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

3-94

Section 4

Inside Python Objects

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Overview

® |nner details on how Python objects work
® Object representation

® Attribute binding

® Type checking

® Descriptors

® Attribute special methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4.

2

Dictionaries Revisited

® A dictionary is a collection of named values

stock = {
"name'’ : 'GOOG',
'shares’' : 100,
'price' : 490.10

}

® Dictionaries are commonly used for simple
data structures (shown above)

® However, they are used for critical parts of the
interpreter and may be the most important
type of data in Python

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Dicts and Obijects

® User-defined objects use dictionaries
® |nstance data
® Class members

® |n fact, the entire object system is mostly
just an extra layer that's put on top of
dictionaries

® |et's take a look...

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4- 4

Dicts and Instances

® A dictionary holds instance data (__ dict)

>>> s = Stock('GOOG',100,490.10)
>>> s. _dict
{'name' : 'GOOG', 'shares' : 100, 'price': 490.10 }

® You populate this dict when assigning to self

class Stock:
def @ init (self,name,shares,price):
self.name = name
self.shares = shares
self.price = price

4)

{
'name’ : 'GOOG',
self. dict > 'shares’' : 100,
'price’ : 490.10

}

. J

instance data

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Dicts and Instances

® Critical point : Each instance gets its own

private dictionary

/7

Stock('GOOG',100,490.10)
Stock('AAPL',50,123.45)

® So, if you created 100
instances of some class,
there are 100
dictionaries sitting
around holding data

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

(

{
'name'’ 'GOOG ',
'shares' : 100,
'price’' : 490.10
L}
-
{
'name’ "AAPL ',
'shares' : 50,
'price' : 123.45
}

Dicts and Classes

® A dictionary holds the members of a class

class Stock:

def __init__ (self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

def cost(self):
return self.shares * self.price

def sell(self, nshares):

self.shares -= nshares
e N
{
'cost' : <function>,
Stock. dict > 'sell’ : <function>,
' _init ' <function>,
}
- Y,
methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-7

Instances and Classes

® |nstances and classes are linked together

® class attribute refers back to the class

>>> s = Stock('GOOG', 100, 490.10)

>>> s. dict_

{'name': 'GOOG', 'shares':100, 'price':490.10 }
>>> s. _class___

<class ' main_ .Stock'>

>>>

® The instance dictionary holds data unique to
each instance whereas the class dictionary
holds data collectively shared by all instances

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Instances and Classes

Instances

. dict j__> {methods}

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4.

9

Attribute Access

® When you work with objects, you access
data and methods using the (.) operator

X = obj.name # Getting
obj.name = value # Setting
del obj.name # Deleting

® These operations are directly tied to the
dictionaries sitting underneath the covers

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Modifying Instances

® Operations that modify an object always
update the underlying dictionary

>>> s = Stock('GOOG',100,490.10)

>>> s. _dict

{'name':'GOOG', 'shares':100, 'price':490.10 }
-_—) >>> s.shares = 50
— >>> s.date = '6/7/2007"

>>> s. dict__

{ 'name':'GOOG', 'shares':50, 'price':490.10,

'date':'6/7/2007"'}

- >>> del s.shares

>>> s. _dict__

{ 'name':'GOOG', 'price':490.10, 'date':'6/7/2007'}
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-1 |

Reading Attributes

® Suppose you read an attribute on an instance

x = obj.name
® Attribute may exist in two places
® | ocal instance dictionary

® (Class dictionary

® So, both dictionaries may be checked

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-12

Reading Attributes

® First check in local dict

® |f not found, look in _ dict of class

iii : ;a::wk(rer) s [.__dict__\ >£{ '‘name': 'GOOG',

' : n__ClaSS_TJ <::> 'shares': 100 }

GOOG :

>>> s.cost()

49010.0

>>> Stock 2__dict__;\ >({'cost': <func>,
J <::> 'sell’ :<func>,

' init ':..}
-

® This lookup scheme is how the members of
a class get shared by all instances

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 4.1

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-14

How Inheritance VWorks

® Classes may inherit from other classes

class A(B,C):

® Bases are stored as a tuple in each class

>>> A. bases
(<class ' main .B'>,<class '
>>>

__main__.C'>)

® This provides a link to parent classes

® This link simply extends the search process
used to find attributes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Reading Attributes

® First check inlocal dict

® [f not found,look in _ dict of class

® If not found in class, look in base classes

=)
iz s = Stock(...) s gict >({'name': 'GOOG',
, s:name . class <::> 'shares': 100 }
GOOG 1 ——
>>> s.cost () l
49010.0 , N
>>> Stock . _dict »| {'cost': <func>,
_bases__ J <::> 'sell' :<func>,
' init ':..}
o ’
look in bases

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-16

Single Inheritance

® |n inheritance hierarchies, attributes are
found by walking up the inheritance tree

class A(object): pass (object)
class B(A): pass *
class C(A): pass
class D(B): pass C A)
class E(D): pass / "
8)
® With single A
inheritance, thereisa (o)
single path to the top 4
8)

® You stop with the
first match

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

° = B0 ("o) instance

The MRO

The inheritance chain is precomputed and
stored in an "MRO" attribute on the class

>>> E. _mro__

(<class ' main .E'>, <class ' main_ _.D'>,
<class ' main_ .B'>, <class ' main_ _.A'>,
<type 'object'>)

>>>

"Method Resolution Order”

To find attributes, Python walks the MRO

First match wins

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Multiple Inheritance

® Consider this hierarchy (onject)

D

class A(object): pass /! N

class B(object): pass (A) (: B)
class C(A,B): pass 4

class D(B): pass k\\ ///1 y<\\
class E(C,D): pass (C) (

® VWhat happens here?

e = E()
e.attr

G-

® A similar search process is carried out, but
there is an added complication in that
there may be many possible search paths

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-19

Multiple Inheritance

® Python uses "cooperative multiple inheritance”

® There are some ordering rules:

Rule |: Children before parents
Rule 2: Parents go in order

® |nheritance works in two directions (up the
hierarchy, across the list of parents)

rule |
A
rule 2

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.0

Multiple Inheritance

® Multiple inheritance hierarchy is flattened

>>> D. _mro__
(<class ' main .D'>, <class ' main__.B'>,
<class ' main .C'>, <class ' main_ _.A'>,

<type 'object'>;_
>>>

® Calculated using the C3 Linearization algorithm
® A constrained merge sort of parent MROs
® An ordering based on "the rules”

® Note: If you must know, there's also a third rule
(first listed parent wins if there's a "tie").

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.7 |

Multiple Inheritance

® Consider classes with a common parent

class Base:

TR

class A(Base): class B(Base): class C(Base):

® All children of a common parent go first

class D(A,B,C):

MRO (1)s(A Yrd((B)rd((C) > (Base)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-22

Why super()?

® Always use super() when overriding methods

class A(Base):
def spam(self):

return super().spam()

® super() delegates to the next class on the MRO

super()
------- > (Sb3ec)
super()

(o)2)8) c)»>(Base) ~»>(object)

® Tricky bit:You don't know what it is

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.3

super() Explained

® super() is one of the most poorly
understood Python features

class A(Base): class A(Base):
def spam(self): VS. def spam(self):
Base.spam(self) super () .spam()

® These two classes are not the same

® super() binds to the next implementation that
is defined according to the instance's MRO

® [t's not necessarily the immediate parent

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.4

Designing for Inheritance

® Rule I: Compatible Method Arguments

spam(args) spam(args) spam(args)

(o D=2)= > c)—>(zase)

® Overridden methods must have a compatible
signature across the entire hierarchy

® Remember: super() might not go to the
immediate parent

® Tip:If there are varying method signatures,
use keyword arguments

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-25

Designing for Inheritance

® Rule 2: Method chains must terminate

spam(args) spam(args) spam(args) spam(args) AttributeError

(o D=2)~ (e)—> (Base) = (objecy

® You can't use super() forever--some class has
to terminate the search chain

class Base:
def spam(self):
pass

® Typically the role of an abstract base class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.6

Designing for Inheritance

® Rule 3: use super() everywhere

spam(args) / \:Pam(args) AttributeError
Co)->C2)8)>(_c)>(Base)—>(object

super super

® Direct parent calls might explode heads

class A(Base):
def spam(self):
Base.spam(self) # NO!

® |f multiple inheritance is used, a direct parent
call will probably violate the MRO

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.7

Exercise 4.2

Time : 25 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-28

Dicts and Classes (Reprise)

® Recall, a dictionary holds class members

class Stock:

def __init__ (self, name, shares, price):
self.name = name
self.shares = shares
self.price = price

def cost(self):
return self.shares * self.price

def sell(self, nshares):

self.shares -= nshares
e N
{
'cost' : <function>,
Stock. dict > 'sell’ : <function>,
' _init ' <function>,
}
- Y,
methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.99

Reading Attributes (Reprise)

® Recall that a two-step process is used to
locate attributes on objects

iii : ;a::wk(rer) s [.__dict__\ >£{ '‘name': 'GOOG',]
' : __class__J @ 'shares': 100 }
GOOG :

>>> s.cost () l
49010.0

>>> Stock . _dict] >({ 'cost': <func>, A

J @ 'sell’ :<func>,
' _init ':..}
\ J

® This is mostly correct

® Except for the extra hidden magic (not shown)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-30

Attribute Binding

® Access to attributes of classes involves one

extra processing step
® Something known as the "descri

® [t's so sneaky that most Python
don't even know it exists

vtor protocol”

brogrammers

® Yet, it holds the whole object system together

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-31

Descriptor Protocol

® VWhenever an attribute is accessed on a class
the attribute is checked to see if it is an
object that looks like a so-called "descriptor”

‘

® A descriptor is an object with one or more of
the following special methods

d. get (obj, cls)
d. set (obj, value)

d. delete (obj)

® |f a descriptor is detected, one of the above
methods gets triggered on access

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-32

Descriptor Demo

® Here is a class that implements a dummy
descriptor (with prints for debugging)

class Descriptor:

def 1init (self, name):
self.name = name
def get (self, instance, cls):
print('%s: get ' % self.name)
def set (self, instance, value):
print('%s: set %s' % (self.name, value))
def delete (self, instance):
print('%s: delete ' % self.name)

® Basically,a descriptor is just an object with
get, set, and delete methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-33

Descriptor Demo

® Descriptors are placed in class definitions

class Foo:
a
b

® Now, watch what happens on access:

>>> £ = Foo()

>>> f.a

a: _get
>>> f.a = 42
a: set 42
>>> del f.a
a: delete

>>> f.b

b: get
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Descriptor('a')
Descriptor('b')

4-34

Descriptor Demo

® Descriptors are presented with information
about the instance, class, and values

class Descriptor:

def init (self, name): __———-—§f = Foo()
self.name = name f.a ..
def get (self, instance7 cls7: f.a =:i42;

print('%s: get ' seXtf .name) .a
def set (self, instancg, value<¢—

print('%s: set %g" % (self.name, value))
def delete (self, instance):
print('%s: delete ' % self.name)

® Confusion: self is the descriptor itself, instance
is the object it's operating on.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4- 35

Descriptor Storage

® Descriptors store and retrieve data

class Descriptor:

def 1init (self, name):
self.name = name
def get (self, instance, cls=None):
return instance. dict_[self.name]
def set (self, instance, \value):
instance _dict_ [self name] = value
® Example:

Dlrect manipulation of the

class Foo(object): instance dictionary
a = Descriptor('a')

b = Descriptor('b’)

.a = 23 # Stores value in f. dict ['a']

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-36

Descriptor Binding

® Descriptors always override __ dict

class Foo:
a Descriptor('a')
b Descriptor('b')

® Modify the instance dict and try accessing

>>> £ = Foo()

>>> f. dict__['a'] = 42
>>> f. dict

{'a': 42}

>>> f.a

a:_ _get

>>> \

notice how the descriptor runs regardless
the value in the instance dictionary

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-37

Who Cares!?

® Every major feature of classes is implemented
using descriptors

® |nstance methods

® Static methods (@staticmethod)
® Class methods (@classmethod)
® Properties (@property)

® slots

® Descriptors provide the glue that connects
instances and classes together in the runtime

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-38

Descriptors in Action

® Recall that .and () are separate operations

>>> s = Stock('GOOG',100,490.10)
>>> s.cost

<bound method Stock.cost of < main .Stock object at
0x37e250>>

>>> s.cost()

49010.0
>>>

® Focus on that "bound method" result
® How did that get created? Magic!

® No,a descriptor did that.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-39

Descriptors in Action

® Behind the scenes of method lookup

>>> s = Stock('GOOG',100,490.10)

class attribute / >>> value = Stock. _dict_ ['cost']
<:>>> value

looku
P <function cost at 0x378770>
>>> hasattr(value,”" get ")
True

descriptor >>> result = value.__get__ (s,Stock)
check and >>> result

invocation <bound method Stock.cost of < main .Stock object at
0x37e250>>
>>> result()

49010.0
>>>

® Functions are descriptors where __ get ()
creates the bound method object

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-40

Descriptors and Properties

® Consider a class with a property attribute

class Stock:
@property
def shares(self):
return self. shares
@shares.setter
def shares(self, value):
self. shares = value

® A property is also a descriptor

>>> s = Stock()
>>> p = Stock._ _dict__ ['shares']

>>> p
<property object at 0x3759c0>

>>> p. set_ (s, 100) # Same as s.shares = 100
>>> p. get_ (s, Stock) # Same as s.shares

100

>>> s.shares

100

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-4|

Descriptors and slots

® Consider a class with slots

class Foo:
~slots. = ('x",'y',"'2")

® |nternally, an array is allocated
0 1 2

X y Z

® FEach slot name is used to create a descriptor
that simply gets or sets values in the
appropriate array position (internals are
implemented in C and hard to view though)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-42

Descriptor Commentary

® Descriptors are one of Python's most
powerful customizations (you own the dot)

® Experts can create their own custom
descriptors and use them to change what
happens in the low levels of the object system

® Often used in advanced programming
frameworks and as an encapsulation tool

4-43

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Descriptor Application

® A common use of descriptors is in describing
data (e.g., Object Relational Mapping, etc.)

class Stock:

name = String('name’',maxlen=8)
shares = Integer('shares')
price = Real('price')

® Provide more precise control than properties.

® Results in less repetitive code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-44

Descriptor Application

® Example descriptor code:

class Integer:
def init (self, name):
self.name = name
def get (self, instance, cls):
return instance. dict [self.name]
def set (self, instance, value):
if not isinstance(value, int):
raise TypeError('Expected an integer')

instance. dict [self.name] = value

® Minor note: ___get () can be omitted if the
name exactly matches that in the instance dict

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-45

Tricky Bits with get

® get can be accessed in two ways

class Foo:
a = Descriptor('a')

® Through an instance (bound)

f = Foo()
f.a

® On the class definition itself (unbound)

Foo.a

® Example : Instance vs. class methods

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-46

Tricky Bits with get

® Recommended _ get implementation

class Descriptor:
def get (self, instance, cls):

if instance is None:
If no instance given, return the descriptor
object itself
return self

else:
Return the instance value
return instance. dict [self.name]

® Always check for presence of an instance
(instance). If None, return the descriptor itself

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-47

Method Descriptors

® A weaker descriptor that only has _ get

class MethodDescriptor:
def get (self, instance, cls):
print('Getting! ")

® Only triggered if obj._ _dict _ doesn't match

class Foo(object):
a = MethodDescriptor("a")

>>> £ = Foo()
>>> f.a

Getting!
>>> f. dict__['a'] = 42

>>> f.a
42 . .
>>> \ Notice how the value in the

dictionary hides the descriptor

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-48

Descriptor Naming

® Descriptors can define a name setter

class Descriptor:
def init (self, name=None):
self.name = name

def get (self, instance, cls):
return instance. dict [self.name]

def set _name_ (self, cls, name):

self.name = name

® Gets information about definition context

class Spam(object):
X = Descriptor() » X. set name (Spam,

x")

® Python 3.6+ only

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-49

Descriptor Conflicts

® Multiple descriptors per attribute aren't allowed

class Point:
__slots = ('x', 'y")
X = Integer()
y = Integer()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: 'x' in _ slots_ conflicts with class variable

® There can only one descriptor in charge

® Coordination is possible (but tricky)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-50

Exercise 4.3

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-51

Attribute Access Methods

® Classes can intercept attribute access

® Set of special methods for setting, deleting,
and getting attributes

GetI obj.x » oObj. getattribute ('x')
l (if not found)
obj. getattr ('x")

Set: obj.x = val ——> obj.__setattr__('x',val)

Delete: del obj.X ——— o0bj. delattr ('x')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4.5?

- getattribute ()

® getattribute _ (self,name)

® (Called every time an attribute is read

® Default behavior looks for descriptors,
checks the instance dictionary, checks bases
classes (inheritance), etc.

® [f it can't find the attribute after all of those
steps, it invokes __ getattr __ (self,name)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-53

- getattr () method

® getattr__ (self,name)

® A failsafe method. Called if an attribute can't
be found using the standard mechanism

® Default behavior is to raise AttributeError

® Sometimes customized

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-54

- setattr () method

® setattr__ (self,name,value)

® Called every time an attribute is set

® Default behavior checks for descriptors,
stores values in the instance dictionary, etc.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-55

- delattr () method

° delattr __ (self,name)

® Called every time an attribute is deleted

® Default behavior checks for descriptors and
deletes from the instance dictionary

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-56

Customizing Access

® A class can redefine the attribute access
methods to implement custom processing

® The most common application of this is for

creating wrapper objects, proxies, and other
similar kinds of objects

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-57

Example : Proxy

® Consider this class

class Proxy:
def init (self,obj):
self. obj = obj
def @ getattr (self,name):
print('getattr:', name)

return getattr(self. obj, name)

® |t holds an internal reference to an object

® Attribute access is redirected to held object

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-58

Example : Proxy

® Example use:

>>> ¢ = Circle(4.0)
>>> c.radius

4.0

>>> c.area()
50.26548245743669

>>> p = Proxy(c)
>>> p

< _ main_ .Proxy object at 0x37£f130>
>>> p.radius

getattr: radi:;-§~§“-~._
4.0

>>> p.area() <«

Notice how attribute access
gets captured by getattr

getattr: area and then redirected to the
50.26548245743669 original object
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-59

Example: Delegation

class A: ® Example:
def foo(self):
print('A.foo') >>> b = B()
def bar(self): >>> b.foo()
print('A.bar') A.foo
>>> b.bar ()
class B: B.bar
def @ init (self): A.bar
self. a = A() >>>

def bar(self):
print('B.bar')
self. a.bar()

def getattr (self, name):
return getattr(self. a, name)

® Sometimes used as an alternative to inheritance

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 4-60

Delegation Caution

® getattr _ doesn't apply to special methods
(e.g., len_, getitem |, etc.)

® Must delegate manually (if needed)

class B:
def init (self):
self. a = A()

def getitem (self, index):
return self. a[index]

def @ getattr (self, name):
return getattr(self. a, name)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-61

Exercise 4.4

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

4-62

Section 5

Functions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Overview

® Function design
® Functional Programming
® Error handling and Logging

® Testing

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Functions

® Functions are a basic building block
® TJop-level functions in a module
® Methods of a class

® Almost all of your code should live in a function

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Function Design

® Try to make functions "self-contained”

arguments g function |[g) result

® Only operate on passed arguments
® Produce the same result for same arguments

® Avoid hidden side-effects

® Goals: Simplicity and Predictability

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Function Invocation

® Names and arguments are the "interface”

result = some func(args)

arguments g [function

® Calling a function should be intuitive and easy

® |t's a core component of making an API

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Naming Conventions

® There is a preferred Python "style”

® Functions should use lowercase names and

def read data(filename): def readData(filename):

Yes No

® Use a leading _ for internal/private funcs

def internal func():

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Default Arguments

® Sometimes you want default arguments

def read data(filename, debug=False):

® |f an argument value is assigned, the
argument is optional in function calls

d
e

read data('data.csv')
read data('data.csv', debug=True)

® Default arguments must appear last in definition

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 7

Keyword Arguments

® Prefer keywords for passing optional arguments

a
b

read data('data.csv', debug=True) # YES!
read data('data.csv', True) # NO!

® Keywords result in better code clarity

® You can force the use of keyword arguments

def read data(filename, *, debug=False):

All arguments after the *
must be given as by keyword

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Default Values

® Don't use mutable values as defaults

def func(a, items=[]):
items.append(a)
return items

® The default value is only created once for
the whole program--mutations are "sticky’

>>> func(1)
[1]

>>> func(2)
[1, 2]

>>> func(3)
[1, 2, 3]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Default Values

® Advice: Only use immutable values such as
None, True, False, numbers, or strings

def func(a, items=None):
if items is None:
items = []
items.append(a)
return items

® This avoids the problem of the default being
modified by accident

>>> func(1)
[1]
>>> func(2)

[2]

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Optional Values

® Sometimes you need to express optional values

® Most common convention is to use None

None # Not assigned
'Guido’ # Assigned

name
name

® Test against None when you use it

if name is not None:
print('Hello', name)

® Caution: Often error-prone if not careful

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Argument Transformation

® Consider

def read data(filename):
records = []
with open(filename) as f:

for line in f: \

records.append(record) DiSCLISS
return records

® Compare with

def read data(lines):
records = []
for line in lines:

records.append(record)
return records

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-12

Argument Transforms

® This version is far more flexible

def read data(lines):
records = []
for line in lines:

records.append(record)
return records

with open('Data.csv') as f:
data = read data(f)

with gzip.open('Data.csv.gz', 'rt') as f:
data = read data(f)

r = requests.get('http://place/data.csv')
data = read data(r.iter lines(decode unicode='utf-8')))

® Question: Should you embrace flexibility?

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Doc Strings

® Functions should have a doc string
def add(x, vy):
Adds x and y together.

return x + vy

® Feeds the help() command and development tools

® |mportant: there are no type signatures or other
details to help people reading your code. If you
can help clarify, that's usually good.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 14

Type Hints (PEP 484)

® Optional annotations can indicate types
def add(x:int, y:int) -> int:
Adds x and y together.

return x + vy

® The type hints do nothing, but may be useful for
code checkers, documentation, IDEs, etc.

>>> help(add)
Help on function add in module @ main :

add(x:int, y:int) -> int
Adds x and y

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 5.1

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5.

|6

Function Results

® Have the function cleanly return a result

function |g result

® Return multiple values with a tuple if needed

def divide(x, y):
guotient = x // vy
remainder = X % y
return (quotient, remainder)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Returning Optionals

® Sometimes a function returns an "optional” value
® Common convention is to return None

® Example: Pattern Matching (re module)

>>> import re

>>> m = re.match('\d+', 'abc')

>>> print(m)

None

>>> m = re.match('\d+', '123")

>>> print(m)

<_sre.SRE_Match object; span=(0, 3), match='123'>
>>>

® For errors: raise an exception instead

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Concurrency

® Functions might execute concurrently (threads)

def foo():

def bar():

from threading import Thread

tl = Thread(target=foo0)
tl.start()

t2 = thread(target=bar)
t2.start()

foo

Python
bar()

' concurrent

execution

® Shared state, execution in single interpreter

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Futures

® Represents a future result (to be computed)

from concurrent.futures import Future

fut = Future()

® TJo store a result

fut.set result(value)

® o wait for a result

value = fut.result()

® Coordination is required

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-20

Future Example

def func(x, y, fut):
time.sleep(20)
- fut.set_result (x+y)

def caller():
fut = Future()
. threading.Thread(target=func, args=(2, 3, fut).start()
Tty result = fut.result ()
print('Got:', result)

® Reminder: Concurrent execution of both functions

® This underlying pattern is used in many contexts
(threads, async, multiprocessing, etc.)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 2]

Exercise 5.2

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5-22

Functional Programming

® Programming style characterized by
® Functions
® No sides effects/mutability

® Higher order functions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5-23

Higher Order Functions

® Essential features...
® Functions can accept functions as input
® Functions can return functions as results

® Python supports both

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5-24

Functions as Input

® Consider these two functions

def sum squares(nums):
total = 0
for n in nums:

total += n * n
return total ‘§§“-~,§-)
only difference

def sum cubes(nums):
total = 0
for n in nums:
total += n ** 3
return total

® They're almost identical (one line differs)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5-25

Functions as Input

® Recognizing commonality is part of abstraction

def sum map(func, nums):
total = 0
for n in nums:
total += func(n)
return total

def square(x):
return x * X

nums = [1, 2, 3, 4]
r = sum map(square, nums)

® This version allows any function to be passed

® Sometimes referred to as a "callback function"

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-26

Lambda Functions

® One-expression functions can use lambda

def sum map(func, nums):
total = 0
for n in nums:
total += func(n)
return total

nums = [1, 2, 3, 4]
result = sum map(lambda x: x*x, nums)

® Creates an anonymous function (on the spot)
® Can only contain a single expression

® No control flow, exceptions, etc.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-27

Partial Application

® |ambda often used to alter function args

def distance(x, Vy):
return abs(x - y)

>>> distance (10, 20)

10

>>> dist_ fromlO = lambda y: distance (10, y)
>>> dist fromlO0(3)

7

>>> dist froml0(14)

4

>>>

® functools.partial

from functools import partial
dist froml0 = partial(distance, 10)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 28

Map-Reduce

® You can sometimes decompose the code further

def sum map(func, nums):
total = 0 .
for n in nums: / func(n) Mapplng

total +=‘£gnc(n)

return total — total += Reduction

nums = [1, 2, 3, 4]
r = sum map(lambda x: x*x, nums)

® There are two basic operations (+, func)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 29

Map-Reduce

def map(func, values):
result = []
for x in values:
result.append(func(x))
return result

def reduce(func, values, initial=0):
result = initial
for n in values:
result = func(n, result)
return result

def sum(x, y):
return x + y

def square(x):
return x * X

nums = [1, 2, 3, 4]
result = reduce(sum, map(square, nums))

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 30

Commentary

® Subdividing problems into small composable
parts is a useful software architecture tool

Data
v Mmap

‘%duce

® Functions are the basic building blocks

CPUs

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5-

31

Exercise 5.3

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 32

Returning Functions

® Consider the following function

def add(x, y):
def do add():
print(f'{x} + {y} -> {x+y}')
return do add

® A function that returns another function?

>>> a = add(3,4)
>>> a

<function do add at 0x6a670>
>>> a()

3+ 4 -> 7
>>>

® Notice that it works, but ponder it...

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 33

Nested Scopes

® Observe how the inner function refers to
variables defined by the outer function

def add(x, y):
def do add():

print(£'{x} + {y} -> {x+y}')
return do add
® Further observe that those variables are
somehow kept alive after add() has finished
>>> a = add(3,4)

>>> a
<function do add at 0x6a670>

P R : Where are the X’y
.. ‘ values coming from!?

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 34

Closures

® If an inner function is returned as a result,
the inner function is known as a "closure"

def add(x, y):
def do add():
print(f'{x} + {y} -> {x+y}")
return do add

® Essential feature : A "closure" retains the
values of all variables needed for the function

to run properly later on

5- 35

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Closures

® Jo make it work, references to the outer

variables (bound variables) get carried along
with the function

def add(x, y):
def do add():
print(f£'{x} + {y} -> {x+y}")
return do add

>>> a = add(3, 4)

>>> a.__closure___

(<cell at 0x54f30: int object at 0x54fel>,
<cell at 0x54fd0: int object at 0x54£f60>)

>>> a._closure_ [0].cell contents

3

>>> a.__closure__ [1].cell_contents
4

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 36

Closures

® Closures only capture used variables

def add(x, vy):
result = x + y
def get result():
return result
return get result

>>> a = add(3, 4)

>>> a.__closure__

(<cell at 0x10bb52708: int object at 0x10b5d3610>,)
>>> a. closure_[0].cell contents

7
>>>

® Carefully observe: x and y are not included
(not needed in the function body)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 37

Closures and Mutability

® Closure variables are mutable (nonlocal decl)

def counter(n):
def incr():
nonlocal n
n += 1
return n
return incr

>>> ¢ = counter(10)
>>> ¢()

11
>>> ¢()

12
>>>

® Can be used to hold mutable internal state,
much like an object or class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 38

Using Closures

® Closures are an essential feature of Python

® Common applications:
® Alternate evaluation (e.g., "delayed evaluation)
® Callback functions

® Code creation ("macros")

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 39

Exercise 5.4

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 40

Function Error Checking

® As you know, exceptions indicate errors

raise RuntimeError("You're dead")

® Exceptions can be caught

try:
statements

except RuntimeError as e:
Handle the runtime error

® The mechanics of exception handling is
usually straightforward, but proper usage is
often a lot trickier than it looks

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 4]

Function Error Checking

® As you know, exceptions indicate errors

raise RuntimeError("You're dead")

® Exceptions can be caught

try:
statements

except RuntimeError as e:
Handle the runtime error

® The mechanics of exception handling is
usually straightforward, but proper usage is
often a lot trickier than it looks

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 42

What Exceptions to Handle!

® Functions should only handle exceptions
where recovery is possible (and makes sense):

def read csv(filename):
f = open(filename)
for row in csv.reader(f):
try:
name = row|[O0]
shares = int(row[1l])
price = float(row[2])
except ValueError as e:
print('Bad row:', row)
continue

® | et all other exceptions propagate--they
usually indicate a more serious problem

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-43

Example

® Don't worry about things like this

>>> read_csv('bogus.csv')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "reader.py", line 10, in read csv
f = open(filename)
FileNotFoundError: [Errno 2] No such file or directory:

'bogus.csv'
>>>

® There is no sensible recovery. The failure is
someone else's problem.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 44

Catching All Errors

® Never catch all exceptions unless you report/
record the actual exception that occurred

try:
Some complicated operation

except Exception as e:

print("Sorry, it didn't work.")
print ("Reason:", e)

® Not reporting actual exception information is
the fastest way to create undebuggable code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 45

lenoring Errors

® No! No! No!

try:
Some complicated operation

except Exception:
pass

® Argh!!!! Boom!

try:
Some complicated operation

L '3
e e e & ' * . i ‘ *‘ :
except Exception: , Arian.é'-S
1! TODO
pass

® Catastrophic failures are often a result of
exception handling gone terribly wrong.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 46

Reraising Exceptions

® Log/re-raise

try:
Some complicated operation

except Exception as e:
print("Sorry, it didn't work.")
print ("Reason:", e)
raise

® Useful if you want to do something with the
exception, but allow it to propagate

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-47

VWWrapped Exceptions

® Wrapping an exception in another exception

try:

except Exception as e:
raise TaskError('It failed') from e

® Unwrapping it later

try:

except TaskError as e:
print ("It didn't seem to work.")
print("Reason:", e. cause)

® Forms an exception chain

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5-48

Managing Resources

® Take care to manage system resources correctly

def read data(filename):
f = open(filename)
try:
. do whatever ...
finally:
f.close()

® A more modern version (context manager)

def read data(filename):
f = open(filename)
with f:
. do whatever ...

® Failure to do this might cause leaky file
descriptors, deadlock, or other problems

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 49

What Exceptions to Raise!

® Applications should have their own exceptions

class ApplicationError (Exception):
pass

class SomeOtherError (ApplicationError):
pass

® |ssue: How do you distinguish between
programming mistakes and exceptions that you
meant to raise?

® Reserve Python's built-in exceptions for
programming mistakes. Catch, don't raise.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 50

Return Codes

® Don't use return codes (usually)

def read data(filename):
Some complicated thing

if error:

return -1 # Oops
else:

return result

® Return codes are not the "standard" way of
signaling errors in Python

® Callers will often forget and program will crash
for a different reason later.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 5]

Logging

® Use logging for recording diagnostics

import logging
log = logging.getLogger(__name_)
def read data(filename):
try:
name = row|[O0]
shares = int(row[1l])
price = float(row[2])

except ValueError as e:

log.warning("Bad row: %s", row)
log.debug("Reason : %s", e)

® Usually a better option than print() functions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 52

Exercise 5.5

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 53

Testing Rocks,
Debugging Sucks

® What else is there to say?

® Dynamic nature of Python makes testing
critically important to most applications

® There is no compiler to find your bugs

® Only way to find bugs is to run the code and
make sure you exercise all of its features

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 54

Example Code

® Suppose you have this function

simple.py
def add(x, y):

Adds x and vy.

return x + vy

>>> add(2,2)

4

>>> add('hello’', 'world')
'helloworld’

>>>

® |Let's test it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 55

Assertions/Contracts

® Assertions are runtime checks
def add(x, y):

Adds x and y

assert isinstance(x, int)
assert isinstance(y, int)
return x + vy

® Function will fail on bad input

>>> add(2, 3)

5

>>> add('2', '3'")

Traceback (most recent call last):

AssertionError
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 56

Assertions/Contracts

® Assertions are not meant to check user inputs

® Should validate program invariants (internal
conditions that must always hold true)

® Failure indicates a programming error and
assign blame (e.g., to the caller)

® Can be disabled (python -O)

bash % python3 -0 prog.py

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 57

unittest Module

® Built-in module used for testing
® Used by the standard library

® Commonly used in other applications

® Will briefly illustrate

5- 58

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Using unittest

® First, you create a separate file

testsimple.py
import simple
import unittest

® Then you define testing classes

class TestAdd(unittest.TestCase):

® They must inherit from unittest. TestCase

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 59

Using unittest

® Define testing methods

class TestAdd(unittest.TestCase):
def test_simple(self):
Test with simple integer arguments
r = simple.add(2, 2)
self.assertEqual(r, 5)

def test_str(self):
Test with strings

r = simple.add('hello’', 'world')
self.assertEqual(r, 'helloworld’)

® Each method must start with "test..."

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 60

Using unittest

® FEach test uses special assertions

Assert that expr is True
self.assertTrue(expr)

Assert that x ==y
self.assertEqual (x,Vv)

Assert that x is near y
self.assertAlmostEqual (x,y,places)

Assert that an exception is raised
with self.assertRaises (SomeError):
statementl
statement?2

® T[here are others

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 5- 6]

Running unittests

® TJo run tests, add the following code
testsimple.py

if name == '_main__ ':
unittest.main()

® Then run Python on the test file

bash % python3 testsimple.py

Traceback (most recent call last):
File "testsimple.py", line 8, in test simple
self.assertEqual(r, 5)
AssertionError: 4 != 5

Ran 2 tests in 0.000s

FAILED (failures=1)
Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

unittest comments

® Can grow to be quite complicated for large
applications

® The unittest module has a huge number of
options related to test runners, collection of
results, and other aspects of testing (consult
documentation for details)

® | ook at pytest as an alternative

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 63

Exercise 5.6

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

5- 64

Section 6

Working with Code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Overview

® Advanced function usage/definition
® |ntrospection

® Code generation (eval, exec)

® (Callables

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Function Arguments

® Functions operate on passed arguments

3
‘e
LN
Taa,

statéments™ arguments

® There are two calling styles

func(1,2,3) # Positional arguments

a=
a = func(x=1,y=2,2z=3) # Keyword arguments

® You can mix the two styles
a = func(1l,z=3,y=2)

® Positional args always go first. Each argument
gets one and only one value

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Variable Arguments

® Function that accepts any number of args

def func(x, *args):

® Here, the arguments get passed as a tuple

func(1,2,3,4,5)

def func(x, *args):

b\

1 (2,3,4,5)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Variable Arguments

® Function that accepts any keyword args

def func(x, y, **kwargs):

® Extra keywords get passed in a dict

func(2, 3, flag=True,mode="fast",header="debug")

v
def func(x, y, **kwargs):

\/
{ 'flag' : True,
'mode’' : 'fast',
'header' : 'debug' }

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Variable Arguments

® A function that takes any arguments

def func(*args, **kwargs):
statements

® This will accept any combination of
positional or keyword arguments

® Sometimes used when writing wrappers or
when you want to pass arguments through
to another function

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Passing Tuples and Dicts

® Tuples can expand into function args

args = (2,3,4)
func(1l, *args) # Same as func(1,2,3,4)

® Dictionaries can expand to keyword args

kwargs = {
'color' : 'red',
'delimiter' : ', "',
'width' : 400 }

func(data, **kwargs)
Same as func(data,color='red',delimiter=',',width=400)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 6- 7

Exercise 6.1

Time : 20 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Scoping Rules

® Programs assign values to variables

X = value # Global variable
def func():
y = value # Local variable

® Python manages variables in two scopes
® Globals (assigned outside functions)

® | ocals (assignments inside functions)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Statement Execution

® All statements execute within two scopes
(even statements not part of a function)

® Global scope is always the module in which
a function is defined

® | ocal scope is either private to a function
or the same as the global scope (for
statements executed at module level)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

- 10

Modifying Globals

® |f you want to modify a global variable you
must declare it as such in the function

X = 42

def func():
global x
x = 37

® global declaration must appear before use

® Only necessary for globals that will be
modified (globals are already readable)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

globals() and locals()

® globals() - Give you a dictionary
representing the contents of global scope

® |ocals() - Gives you a dictionary
representing the contents of local scope

® Can use these to inspect the environment
in which a statement will execute

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

- 12

builtins module

® Built-in functions are in a special module

® Consulted last when looking up names

>>> abs (-45)

45

>>> import builtins
>>> builtins.abs (-45)
45

>>>

® You can modify it (but probably not advised)

>>> builtins.pi = 3.1415926
>>> pi

3.1415926

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 6.2

Time : |5 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

- 14

Function Obijects

® When you define a function, the function

itself becomes a kind of object that you can
manipulate

® Can assign to variables, place in containers,
pass around as data, etc.

® Functions can also be inspected

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Documentation Strings

® First line of function may be string

def func(a, b):
'This function does something.'

® The doc string is stored in ___doc

>>> func. doc

'This function does something.'’
>>>

® Help tools look at doc__, but other
programs might examine it for various
purposes (testing, etc.)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Annotations/Type Hints

® Arguments and return might be annotated

def func(a:int, b:int) -> int:

® Stored in __annotations

>>> func._ annotations_

{'a': <class 'int'>, 'b': <class 'int'>,
'return': <class 'int'>}

>>>

® Annotations do nothing--purely informational
for other code that might want to look at
them.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Function Attributes

® little known fact :You can attach arbitrary
attributes to a function

def func(a, b):
'This function does something.'

func.threadsafe = False
func.blah = 42

® Under the hood, each function has a
dictionary (__dict) that holds these values

® Useful for code that manipulates functions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Function Inspection

® Almost every aspect of a function can be

inspected if you know where to look

def func(a, b, c=42):
'This function does something.'’

>>> func.__name___

'func’

>>> func.__defaults___

(42,)

>>> func.__code_

<code object func at 0x325f50, file "<stdin>",
>>> func.___code___.co_argcount

3

>>> func.__code__ .co_varnames

('a', 'b', 'c")

® Use the dir() function to see more

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

line 1>

inspect Module

® Use the inspect module to get details about
functions in a more useful form

def func(a, b, c=42):

>>> import inspect

>>> sig = inspect.signature(func)
>>> print(sig)

(a, b, c=42)

>>> list(sig.parameters)

['a', 'b', 'c']

>>> sig.parameters['c'].default

® Many more module features (not shown)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 6- 20

Signature Binding

® Signatures can be bound to *args, **kwargs

sig = inspect.signature(some func)

args = (1

r 2)
kwargs = {'c

‘s 10}
bound = sig.bind(*args, **kwargs)

for name, val in bound.arguments.items():
print (name, '=', val)

® Performs all error checking

® Might simplify code using *args, **kwargs

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 6- 21

Exercise 6.3

Time : |5 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

6- 22

eval() and exec()

® eval(code) - Evaluates an expression

>>> x = 10

>>> eval('3*x - 2")
28

>>>

® exec(code) - Executes arbitrary statements

>>> exec('for i in range(5): print(i)')

= W Nk O

>>>

® Code executes in current globals()/locals()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

6- 23

eval() and exec()

® Caution: Modifications to local scope are lost
def func():

x =10
exec('x = 15; print(x)"') # ——=> 15
print(x) # —-—=> 10 222272

® eval(expr [, globals [, locals])

® exec(code [, globals [, locals])

def func():
x =10
loc = locals()
exec('x = 15; print(x)', globals(), loc) # ---> 15
x = loc['x']
print(x) # ———> 15

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 6- 24

eval/exec Caution

® Use these features with extreme care
® Overuse will likely make people hate you
® Tricky interaction with scoping/variables

® Potential security issue with untrusted inputs

6- 25

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Exercise 6.4

Time : |5 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

6- 26

Callable Objects

® You can define your own objects that
emulate Python functions (e.g., "callables")

class Callable:
def call (self,*args,**kwargs):
print('Calling’', args, kwargs)

® Must implement _ call special method

>>> ¢ = Callable()

>>> ¢(2,3,color="red’)

Calling (2, 3) {'color': 'red'}
>>>

® Free to do anything you wantin __ call

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 6- 27

Defining Callables

® Callable objects sometimes defined when
you need to have more than just a function
(e.g., storing extra data, caching, etc.)

class Memoize:

def init (self,func):
self. cache = {}
self. func = func

def call (self,*args):
if args in self. cache:

return self. cachel[args]

r = self. func(*args)
self. cachel[args] = r
return r

def clear(self):
self. cache.clear()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

6- 28

Exercise 6.5

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

6- 29

Section 7

Metaprogramming

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7.

Introduction

® Writing programs where there is a lot of

COC

e replication is usually problematic

® Jec

lous to write

® Hard to maintain

® Painful if you decide that you need to make a
change (or fix a bug) in all of that extremely
repetitive code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-2

Metaprogramming

® Metaprogramming pertains to the problem
of writing code that manipulates other code

® Common examples:
® Macros
® Wrappers
® Aspects

® Essentially, it's doing things to code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

] -

3

Python Metaprogramming

® Major features
® Decorators
® (Class decorators
® Metaclasses
® We're going to talk about all of them

® They are not as difficult to grasp as you think

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7- 4

Decorators

® A decorator is a function that creates a
wrapper around another function

® The wrapper is a new function that works
exactly like the original function (same
arguments, same return value) except that
some kind of extra processing is carried out

® |et's see a simple example first

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Wrapper Functions

® Here is a simple function:

def add(x, y):
return x + y

® Here is an example of a wrapper function

def logged add(x, y):
print('Calling add')
return add(x, V)

® Example use:

>>> add(3, 4)

7

>>> logged_add (3, 4) This extra output is created by the
Calling add <— wrapper, but the original function

/ is still called to get the result
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7- 6

Creating Wrappers

® Insight :You can write a function that makes a
wrapper around any function

def logged(func):
Define a wrapper function around func
def wrapper(*args, **kwargs):
print('Calling', func. name)
return func(*args, **kwargs)
return wrapper

® Usage:

>>> logged _add = logged(add)
>>> logged_add

<function wrapper at 0x378670>
>>> logged_add (3, 4)

Calling add

7
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-7

Wrappers as Replacements

® When you create a wrapper, you often want
to replace the original function with it

def add(x, y):
return x + vy

Replace add with a wrapped version
add = logged(add)

® Other code continues to use the original
function name, but is unaware that a wrapper
has been injected (that's the whole point)

>>> add (3, 4)
Calling add

7
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7- 8

Decorator Concept

® When you replace a function with a wrapper,
you are usually giving the function extra
functionality

® This process is known as "decoration”

® You are "decorating" a function with some
extra features

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-9

Decorator Syntax

® The definition of a function and wrapping
almost always occur together

def add(x, y):
return x + y
add = logged(add)

® However, it looks weird and is error prone

® The @decorator syntax simplifies it

@logged
def add(x, vy):
return x + y

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Decorator Syntax

® Whenever you see a decorator, a function is

getting wrapped. That's it

® Example :In classes

class MyClass:
@staticmethod
def bar():

@classmethod
def spam(cls):

@property
def name(self):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

class MyClass:

def bar():

bar = staticmethod(bar)
def spam(cls):

spam = classmethod(spam)
def name(self):

name = property(name)

Using Decorators

® Use a decorator anytime you want to define a
kind of "macro” involving function definitions

® There are many possible applications
® Debugging and diagnostics
® Avoiding code replication

® Enabling/disabling optional features

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-12

Timing Measurements

® A decorator that reports execution time

import time
def timethis(func):
def wrapper(*args, **kwargs):
start = time.time()

r = func(*args, **kwargs)

end = time.time()
print(func. name , end - start)
return r

return wrapper

® Usage:

@timethis

def bigcalculation():
statements
statements

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-13

Exercise /.|

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-14

Advanced Decorators

® There are a few tricky additional details
® Multiple decorators
® Decorators and metadata

® Decorators with arguments

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-15

Multiple Decorators

® You can apply as many decorators as you want

@foo

@bar

@spam

def add(x, y):
return x + y

® This is the same as this:

add = foo(bar(spam(add)))

® To keep your sanity, it's probably not a good
idea to go overboard with it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Function Metadata

® When you define a function, there is some extra
information stored (name, doc strings, etc.)

def add(x, y):
'Adds x and y'
return x + y

>>> add.__ name
‘add'’

>>> add._ doc___

'Adds x and y'

>>> help(add)

Help on function add in module main_ :

add(x, y)

Adds x and y
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

The Metadata Problem

® Decorators don't preserve metadata

@logged
def add(x, y):
'Adds x and y' return x + y

>>> add.__ _name___

'wrapper'

>>> add. doc

>>> help(add)

Help on function wrapper in module @ main :

wrapper (*args, **kwargs)
>>>

® This is a problem

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Copying Metadata

® Decorators should copy metadata

def logged(func):
def wrapper(*args, **kwargs):
print('Calling', func. name)
return func(*args, **kwargs)

'nahual wrapper._ name__ = func.__name__
copying of > wrapper. doc__ = func._ doc
metadata return wrapper

® A better solution : use @wraps

from functools import wraps

Copies def logged(func):
metadata ——» @wraps (func)
from func to def wrapper(*args, **kwargs):

print('Calling’', func. name)
return func(*args, **kwargs)
return wrapper

the wrapper

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-19

Decorators with Args

® Decorators can accept arguments

@decorator(x, y, Zz)
def func():

® [t's mind boggling, but here's what happens

def func():

func = decorator(x, y, z)(func)

® The decorator function must return a
function which is called to make a wrapper

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-20

Decorators with Args

® Example: Logging with a custom message

def logmsg(message):
def logged(func):
@wraps (func)
def wrapper(*args, **kwargs):
print (message.format (name=func. name))
return func(*args, **kwargs)
return wrapper
return logged

® Example use:

@logmsg('You called {name}')
def add(x, y):
return x + y

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-21

Decorators with Args

® Example: Logging with a custom message

def logmsg(message) : <« Arguments can
def logged(func): be used by the
, @wraps (func) i
code inside
Outer function def wrapper(*ac kwargs) :
takes the print (message.format (name=func. name))
arguments return func(*args, **kwargs)

return wrapper
return logged

® The outer function is like an enclosing
environment that gets added to the decorator
to accept the extra arguments

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-22

Decorators with Args

® Example: Logging with a custom message

def logmsg(message):
def logged(func):
@wraps (func)

The same def wrapper (*args, **kwargs):
decorator code print (message.format (name=func. name))
as before return func(*args, **kwargs)

return wrapper
return logged

® |nner functions are standard decorator code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-23

Decorators with Args

® Decorators with args are more general

® You can specialize to a no-argument case
logged = logmsg('Calling {name}"')

@logged
def add(x, vy):
return x + y

® This is subtle, but useful for simplifying code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-24

Exercise 7.2

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-25

Class Decorators

® Decorators can be applied to class definitions

@decorator
class MyClass:
def bar(self):

def spam(self):

® [t's exactly the same as doing this:

class MyClass:
def bar(self):

def spam(self):

MyClass = decorator(MyClass)

® Manipulates or wraps a class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-26

Class Decorators

® Most class decorators inspect or do something
special with the class definition

® Typical prototype

def decorator(cls):
Do something with cls

Return the original class back
return cls

® Observe: The original class is not replaced

7-27

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Example

® Recording all attribute lookups

def logged getattr(cls):

Get the original implementation

orig getattribute = cls. getattribute
Replacement method
def getattribute (self, name):

print('Getting:', name)

return orig getattribute(self, name)

Attach to the class
cls. getattribute = getattribute
return cls

® This is replacing a method of the class

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-28

Example

@logged getattr
class MyClass:
def foo(self):
pass
def bar(self):
pass

>>> s = MyClass()
>>> s.x = 23

>>> S.X

cetting: x Notice how all lookups
>>> s.foo() <)
Getting: foo now have logging

>>> s.bar ()
Getting: bar
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-29

Decoration via Inheritance

® Base classes can observe inheritance

class Parent:
@classmethod
def init subclass (cls, **kwargs):
Do something with cls (the subclass)

class Childl (Parent):
pass

class Child2(Parent, a=1, b=2):
pass

® Makes it easier to have implicit class decorators

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-30

Exercise 7.3

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-31

Disclaimer

® What follows is Python's most advanced bit

® Took years for programmers to even
understand what anyone was talking about

® Even now, the details are somewhat hairy

® Also known as the “killer joke"

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-32

Types

® As you hopefully know, all values in Python
have an associated type

® Example:

>>> x = 42

>>> type (x)

<class 'int'>

>>> s = 'Hello'

>>> type(s)

<class 'str'>

>>> items = [1,2,3]
>>> type(items)
<class 'list'>

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-33

Type Constructor

® The "type" is usually a callable for creating

objects of that type

® Example:

>>> jitems = [1,2,3]
>>> type(item)
<class 'list'>

>>> a = list () # Create a new list object

>>> a

[]

>>> b = tuple(items) # Convert to a tuple

>>>

® Type conversions like this are common

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-34

Types and Classes

® Classes also define new types

class Spam:
pass

>>> s = Spam()

>>> type(s)

<class ' main_ .Spam'>
>>>

® |t is exactly the same as with built-ins

® The class is the type of instances created

® The class is a callable that creates instances

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-35

Types of Classes

® Classes are instances of types

® Observe by getting the type of a class itself

>>> class Spam:

pass 4)
. Recall: type() tells you
>>> type (Spam) the type of an object.
<class 'type'> Here we're using it
>>> isinstance(Spam, type) on a class itself.
True \. y,

>>>

® This requires some thought, but it should
make some sense (a class is simply a type)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-36

Creating Types

® Head explosion: types are represented by their
own class (type)

class type:

>>> type
<class 'type'>
>>>

® This class creates new "type" objects

® |n fact, this is the class that processes class
definitions when you define your own classes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-37

Classes Deconstructed

® Consider a class:

class Spam(object):
def init (self, name):
self.name = name
def yow(self):
print("Yow!", self.name)

® What are its components?
® Name ("Spam”)
® Base classes (object)

® Functions (__init__,yow)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-38

Creating a Class

® You can create a class manually from pieces

Define some method functions
def init (self,name):
self.name = name
def yow(self):
print("Yow!", self.name)

Make a method table

methods = {' 1init ':

yow' : yow }

init ,

Make a new type (Spam)
Spam = type('Spam’', (object,), methods)

® These steps mimic the class statement

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-39

Class Definition Process

® VWhat happens during class definition!?

class Spam(object):
def init (self, name):
self.name = name
def yow(self):
print("Yow!", self.name)

® Stepl:Body of class is captured

body = '"''
def init (self, name):
self.name = name
def yow(self):
print("Yow!", self.name)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-40

Class Definition Process

® Step 2: A dictionary is created

__dict = type. prepare ('Spam', (object,))

® Normally, you get a plain Python dictionary

>>> type._ prepare_('Spam', (object,))
{}

>>>

® Some extra metadata is inserted

__dict [' qualname '] = 'Spam'
__dict [' module '] = 'modulename'

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-41

Class Definition Process

® Step 3:Class body is executed in the dict

exec (body, globals(), dict)

® The statements in the body run like a script

® Afterwards, dict is populatec

>>> dict

{
' init ': <function _ init at 0x4dal0>,
'yow': <function yow at 0x4dd70>},
' qualname ': 'Spam',
' module ': 'modulename'
}
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-4?

Class Definition Process

® Step 4: Class is constructed from its name,
base classes, and the dictionary

>>> Spam = type('Spam', (object,), dict)
>>> Spam

<class ' main_ .Spam'>

>>> s = Spam('Guido')

>>> s.yow()

Yow! Guido

>>>

® type(name, bases, dict) constructs a class object

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-43

Exercise 7.4

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-44

Metaclasses Defined

® A class that creates classes is called a metaclass

® type is an example of a metaclass

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-45

The Metaclass Hook

® Python provides a hook that allows you to
override the class creation steps

® You can use a different metaclass than "type’

® Using this, you can completely customize
what happens when a class is created.

7-46

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Metaclass Selection

® metaclass keyword argument

® Sets the class used to create the class object

class Spam(metaclass=type):
def init (self, name):
self.name = name
def yow(self):
print("Yow!", self.name)

® By default, it's set to 'type’, but you change it
to something else (more shortly)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-47

Metaclass Selection

® Compatibility note: Python 2 is different

® Use the metaclass attribute instead

class Spam:
__metaclass = type # Python 2 only
def init (self, name):
self.name = name
def yow(self):
print("Yow!", self.name)

® Comment:Very difficult to provide Py2/3
compatibility due to syntax difference

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-48

Metaclass Inheritance

® |f no metaclass is set, Python uses the same
type as the base class

class Spam(object):
def init (self, name):
self.name = name
def yow(self):
print("Yow!")

>>> object. class
<class 'type'>

>>> type(Foo)

<class 'type'>

® Note: this is why you rarely see it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-49

Creating a New Metaclass

® You inherit from type and redefine methods such

as __hew__, prepare_, etc.
class mytype(type):

@staticmethod
def new (meta, name, bases, methods):
print('Creating class : ', name)
print('Base classes : ', bases)
print('Attributes : ', list(methods))
return super(). new (meta, name, bases, methods)

® Then you define a new root-object

class myobject(metaclass=mytype):
pass

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-50

Using a Metaclass

® To use the new metaclass, define classes so
that they inherit from your root object

class Spam(myobject):
def init (self, name):
self.name = name
def yow(self):
print("Yow!", self.name)

® You should see your metaclass at work

Creating class : Spam
Base classes : (<class ' main_ .myobject'>,)
Attributes : ['yow', ' module ', ' init ']

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-51

Exercise /7.5

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-52

Typical Applications

® Metaclasses allow alteration of the class
definition process itself

® Setting up the class definition environment
® Changing instance creation

® Coding conventions/rules

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-53

Using a Metaclass

® Metaclasses allow class definitions to be
monitored and manipulated

® There are 4 main interception points

type. prepare (name, bases)

l class
type. new (type, name, bases, dict) deﬁnition
type. init (cls, name, bases, dict)

Instance
type. call (cls, *args, **kwargs) .
creation

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-54

Example: Duplicate Check

class dupedict(dict):
def setitem (self, key, value):
assert key not in self, '%s duplicated' $% key
super(). setitem (key, value)

class dupemeta(type):
@classmethod
def prepare (cls, name, bases):
return dupedict()

® Example:

class A(metaclass=dupemeta):
def bar(self):
pass
def bar(self):
pass

> Fails! Duplicate

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-55

Example: Decoration

def decorator(func):

Decorator

class meta(type):
@staticmethod
def new (meta, clsname, bases, dict):
for key, val in dict.items():
if callable(val):
dict[key] = decorator(val)
return super(). new (meta, clsname, bases, dict)

® This class wraps all methods with a decorator

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-56

Example: Instance Creation

class meta(type):
def call (cls, *args, **kwargs):
print('Creating instance of', cls)
return super(). call (*args, **kwargs)

® Example:

>>> class A(metaclass=meta):
pass

>>> a = A()

Creating instance of <class ' main .A'>
>>>

® Potentially useful for special cases (singletons,
caching, etc.)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-57

Commentary

® Metaclasses are not something you should be
defining without really good reasons

® Target audience:
® Framework builders
® |ibrary developers
® Consider using a class decorator first

® End users should not be messing around with
metaclasses in their own code

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 7-58

Exercise 7.6

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

7-59

Section 8

Iterators, Generators, and
Coroutines

Iteration

® |teration defined: Looping over items

a=1[2,4,10,37,62]
Iterate over a
for x in a:

® A very common pattern
® |oops, list comprehensions, etc.

® Most programs do a huge amount of iteration

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Iteration: Protocol

® |[teration

for x in obj:
statements

® Underneath the covers

_iter = obj. iter () # Get iterator object
while True:
try:
X = iter. next () # Get next item
except StopIteration: # No more items
break

statements

® Objects that work with the for-loop all
implement this low-level iteration protocol

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Iteration: Protocol

® Example: Manual iteration over a list

>>> x = [1,2,3]

>>> it = x.__iter__ ()

>>> it

<listiterator object at 0x590b0>
>>> it. next__ ()

1
>>> it. next__ ()
2
>>> it. next_ ()
3

>>> it. next_ ()

Traceback (most recent call last):
File "<stdin>", line 1, in ?

StopIteration

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Delegating Iteration

® Sometimes custom containers will delegate

class Portfolio:
def init (self):
self. holdings = []

def iter (self):
return self. holdings. iter ()

® Making containers iterable usually a good idea

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Generators

® Generators simplify customized iteration

def countdown(n):
print('Counting down from', n)
while n > O0:
yield n
n -=1

>>> for i in countdown(5):
print ('T-minus', i)

Counting down from 5
T-minus
T-minus
T-minus
T-minus
T-minus
>>>

R N W O,

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Generator Functions

® Behavior is different than normal func

® Calling a generator function creates an
generator object. It does not start running
the function.

def countdown(n):
print('Counting down from', n)

while n > 0: ‘\\\

yield n
n -= 1 Notice that no
output was
>>> x = countdown (10) «— produced
>>> x
<generator object at 0x58490>
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Generator Functions

Function only executes on next()

>>> x = countdown(10)

>>> x
<generator object at 0x58490>
>>> next (x) # invokes x._ next_ ()

Counting down from 10‘\(Function starts J

10 .
executing here
>>>

® yield produces a value, but suspends function

Function resumes on next call to next()

>>> next(x)
9

>>> next(x)
8

>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Generator Functions

® When the generator returns, iteration stops

>>> next(x)

1

>>> next(x)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

StopIteration

>>>

® Observation : A generator function implements
the same low-level protocol that the for
statement uses on lists, tuples, dicts, files, etc.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 9

Reusing Generators

® (Generators are one-time use

>>> ¢ =
>>> for

T-minus
T-minus
T-minus
T-minus
T-minus
>>> for

>>>

countdown (5)
X in c:
print ('T-minus’', x)

R N W O

X in c:
print ('T-minus', x)

® You can recreate to start again

>>> ¢ =

countdown (5)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 10

Reusable Generators

® Subtle trick: Make a class with __iter ()

class Countdown:
def init (self, n):
self.n = n

def iter (self):
n = self.n
while n > 0O:
yield n
n -=1

® Every use of iteration makes a new generator

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- ||

Exercise 8.1

Time : 20 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

- 12

Producers & Consumers

® Generators are closely related to various
forms of "producer-consumer” programming

producer
def follow(f): consumer
while True: for line in follow(f):
e o o //. o o
yield line —

® yield produces values

® for consume values

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- I3

Generator Pipelines

® You can use this aspect of generators to set
up processing pipelines (like Unix pipes)

® Big picture:

producer [—>|processing|—>|processing|—>| consumer

® Processing pipes have an initial data producer,
some set of intermediate processing stages,
and a final consumer

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 14

Generator Pipelines

producer

def producer():

yield item

® Producer is typically a generator (although it
could also be a list or some other sequence)

® yield feeds data into the pipeline

processing

—

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

processing

consumer

8- 15

Generator Pipelines

producer |—>|processing|—>|processing|—>{ consumer

def producer(): def consumer(s):

ce . for item in s:
yield item

® Consumer is just a simple for-loop

® |t gets items and does something with them

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8_ I 6

Generator Pipelines

producer |—>|processing|—>|processing|—>| consumer

def producer(): def processing(s): def consumer(s):
for item in s: for item in s:

yield item «oe
yield newitem

® |ntermediate processing stages simultaneously
consume and produce items

® They might modify the data stream

® They can also filter (discarding items)

8- 17

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Generator Pipelines

producer |—>|processing[—>|processing|—>| consumer

def producer(): def processing(s): def consumer(s):
for item in s: for item in s:

yield item —. .. 4_’////2.

yield newitem

® Pipeline setup (in your program)

a = producer()

—

. N
b = processing(a)
—

c = consumer(b)

® You will notice that data incrementally flows
through the different functions

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 18

Exercise 8.2

Time : |5 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

- 19

Yield as an Expression

® |n generators, yield can be used as an expression

® For example, on the right side of an assignment

def match(pattern):
print('Looking for %s' % pattern)
while True:
line = yield
if pattern in line:
print(line)

® Question :What is its value?

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 20

Coroutines

® [f you use yield like this, you get a "coroutine”

® |t defines a function to which you send values

>>> g = match('python')

>>> g.send(None) # Prime it (explained shortly)
Looking for python

>>> g.send('Yeah, but no, but yeah, but no')

>>> g.send('A series of tubes')

>>> g.send('python generators rock!')

python generators rock!

>>>

® Sent values are returned by (yield)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 2|

Coroutine Execution

® Executionist

ne same as for a generator

® When you ca

| a coroutine, nothing happens

® Only runs in response to send() method

>>> g = match('

>>> g.send(None) \, N
Looking for python On first operation,

>>>

N
Notice that no

output was

python' 1/ L produced

coroutine starts
running

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 22

Coroutine Priming

® All coroutines must be "primed" by first calling
send(None)

® This advances execution to the location of the
first yield expression.

def match(pattern):
print ('Looking for %s' % pattern)

while True: [send(None) advancesJ

line = yield < the coroutine to the
1f pattern in line: first yield expression
print(line)

® At this point,it's ready to receive a value

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 23

Using a Decorator

® Remembering the first send() is easy to forget

® Solved by wrapping coroutines with a decorator

def consumer (func):
def start(*args,**kwargs):
cr = func(*args, **kwargs)
cr.send(None)
return cr
return start

@consumer
def match(pattern):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 24

Processing Pipelines

® Coroutines can also be used to set up pipes

send() send() send()

— coroutine) —)(coroutine) — (coroutine)_’

® You just chain coroutines together and push
data through the pipe with send() operations

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8-

25

An Example

® A source that mimics Unix 'tail -f
import time
def follow(filename, target):
f = open(filename)
f.seek(0,2) # Go to the end of the file
while True:
line = f.readline()

if line != "':
target.send(line)
else:
time.sleep(0.1) # Sleep briefly=
® A consumer that just prints the lines
@consumer

def printer():
while True:
line = yield
print(line, end="' ')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 26

An Example

® A filter coroutine

@consumer
def match(pattern, target):
while True:

line = yield # Receive a line
if pattern in line:
target.send(line) # Send to next stage

® Hooking it up

follow(' 'access-1log',
match('python',
printer()))

® A picture

(follow() j

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 27

send() send()

match () :) printer())

Dataflow

® With coroutines, you can "fan out”

coroutine)

send()

send() send() send()

— coroutine)—)(coroutine)—) coroutine)_’

sm
(coroutine)

® More possibilities than a simple pipeline

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 28

Exercise 8.3

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 29

Generator Control Flow

® Generators have support for forced
termination and exception handling

® close() method - terminates
® .throw() method - raise an exception

® Examples follow

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 30

Closing a Generator

® Use .close() method to shutdown

g = genfunc() # A generator
g.close()
® This raises GeneratorExit at yield
def genfunc():
try:
yield item
except GeneratorExit:
.close() was invoked

perform cleanup (if any)

return

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 31

Raising Exceptions

® Use .throw(type [,val [, tb]]) for exceptions

g = genfunc() # A generator

g.throw(RuntimeError, "You're dead")

® This raises an exception at the yield
def genfunc():
try:
yield item

except RuntimeError as e:
Handle the exception

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 32

Exercise 8.4

Time : 10 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 33

Managed Generators

® Observation: A generator function can not
execute solely by itself. It must be driven by
something else (e.g., for-loop, send(), etc)

® Observation: The yield statement represents a
point of preemption. Generators suspend at
the yield and don't resume until instructed.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 34

Managed Generators

manager
next () .send()
J/ .throw() .close() \\\
% (generator) (generator) (generator)
g (generator) (generator) (generator)

® |dea: A manager will coordinate the execution
of a collection of executing generators

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8-

35

Managed Generators

® Typical applications
® Concurrency (tasklets, greenlets, etc.)
® Actors
® Event simulation

® This is a big topic

® Will give a simple example

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 36

Example : Concurrency

® Define some "task” functions

def countdown(n):
while n > O0:
print('T-minus', n)
yield
n -=1

def countup(n):
x =0
while x < n:
print('Up we go', X)
yield
X += 1

® Carefully observe: just a bare "yield"

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 37

Example : Concurrency

® |nstantiate some tasks in a queue

tasks = deque(|[
countdown(10),
countdown(5),
countup(20)

1)
® Run a little scheduler (the manager)

def run():
while tasks:

t = tasks.popleft() # Get a task
try:

t.send(None) # Run to yield

tasks.append(t) # Reschedule
except StopIteration:

pass

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 38

Example : Concurrency

e Output

T-minus 10
T-minus 5
Up we go 0
T-minus 9
T-minus 4
Up we go 1
T-minus 8
T-minus 4
Up we go 2

® We see tasks cycling, but there are no threads

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 39

Exercise 8.5

Time : 20 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 40

Delegating Generation

® Problem: Library functions involving generators

def countdown(n): def countup(end):
while n > O0: n =20
yield n while n < end:
n -=1 yield n
n += 1

def up and down(n):
countup(n)
countdown (n)

® Problem: It doesn't run...

® Generators can't run on their own.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 41

Delegating Generation

® Option |: Drive the generator yourself

def up and down(n):
for x in countup(n):
yield x
for x in countdown(n):
yield x

® You need to manually control each generator
with for-loops, send(), throw(), etc.

® Can get quite complicated for coroutines

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 42

Delegating Generation

® Option 2: Let Python drive it (yield from)

def up and down(n):
yield from countup(n)
yield from countdown(n)

® Whatever "outer” code runs the generator will
take care of it (you don't worry about it)

for x in up and down(5): # 0,1,2,3,4,5,4,3,2,1

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 43

Async/Await

® Alternate syntax for defining a coroutine (async)

async def greeting(name):
return f'Hello {name}'

>>> g = greeting('Guido’)
>>> g
<coroutine object greeting at 0x10b8b8258>
>>> g.send(None)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration: Hello Guido

® Syntax for calling a coroutine (await)

async def main():
names = ['Guido', 'Dave', 'Paula'’]
for name in names:
g = await greeting(name)
print(g)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 8- 44

Async/Await

® async/await mainly associated with asynchronous
/O, the asyncio module, and related tools

® Provides a better environment for multitasking
® The topic of a whole different course

® See: "Fear and Awaiting in Async”

https://www.youtube.com/watch?v=E-1Y4kSsAFc

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 45

More Information

® "Generator Tricks for Systems
Programmers" tutorial from PyCon'08

http://www.dabeaz.com/generators

® "A Curious Course on Coroutines and
Concurrency” tutorial from PyCon'09

http://www.dabeaz.com/coroutines

® "Generators:The Final Frontier" tutorial
from PyCon'l4

http://www.dabeaz.com/finalgenerator

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8-

46

Exercise 8.6

Time : |5 Minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

8- 47

Section 9

Modules and Packages

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Introduction

® You've written some code
® Now you need to organize it

® Possibly give it to others

® How do you do it!?

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Modules Revisited

® As you know, every source file is a module

foo.py
def grok(a):

def spam(b):

® import statement loads and executes a module

import foo

a
b

foo.grok(2)
foo.spam('Hello')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9. 3

Module Obijects

® Modules are objects

>>> import foo
>>> foo

<module 'foo' from 'foo.py'>
>>>

® A "namespace" for definitions inside

>>> foo.grok(2)
>>>

® Actually a layer on top of a dictionary (globals)

>>> foo. _dict__['grok']

<function grok at 0x1006b6c80>
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Special Variables

® A few special variables defined in a module

__file # Name of the source file
___name_ # Name of the module
doc # Module documentation string

® Example: "main" check

if name == ' main_':
print('Running as the main program')
else:

print (' Imported as a module using import')

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Import Implementation

® |Import in a nutshell (pseudocode)
import types

def import module(name):
locate the module and get source code
filename = find module(name)
code = open(filename).read()

Create the enclosing module object
mod = types.ModuleType(name)

Run it
exec(code, mod. dict , mod. dict
return mod

)

® Source is exec'd in module dictionary

® Contents are whatever is left over

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Import statement

® import executes the entire module

bar.py
import foo

® |t inserts a hame reference to the module

object into the dictionary used by the code
that made the import

bar.py bar. dict

import foo (

\ {
foo. k(2 *ee
©0.grok(2) — 'foo' : <module 'foo'>

}

_

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Module Cache

® Fach module is loaded only once

® Repeated imports just return a reference to
the previously loaded module

® sys.modules is a dict of all loaded modules

>>> import sys
>>> list(sys.modules)

['copy reg', ' main ', 'site', ' builtin ',
'encodings', 'encodings.encodings', 'posixpath', ...
>>>

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Import Caching

® |Import (pseudocode)

import types
import sys

def import module(name):
Check for cached module
if name in sys.modules:
return sys.modules[name]

filename = find module(name)
code = open(filename).read()
mod = types.ModuleType (name)
sys.modules[name] = mod

exec(code, mod. dict , mod. dict
return mod

)

® There is more, but this is basically it

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

from module import

® Selected symbols can be imported locally

bar.py
from foo import grok

grok(2)
® Useful for frequently used names

® Confusion: This does not change how import
works. The entire module executes and is
cached. This merely copies a name.

grok = sys.modules['foo'].grok

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-10

from module import *

® Takes all symbols from a module and places
them into the caller's namespace

bar.py
from foo import *

grok(2)
spam('Hello')

® However, it only applies to names that don't
start with an underscore ()

® name often used when defining non-
imported values in a module.

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Module Reloading

® Modules can sometimes be reloaded

>>> import foo

>>> import importlib

>>> importlib.reload(foo)
<module 'foo' from 'foo.py'>
>>>

® |t re-executes the module source on top of the
already defined module dictionary

pseudocode
def reload(mod):
code = open(mod. file , 'r').read()

exec(code, mod. dict , mod. dict)
return mod

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9-12

Module Reloading Danger

® Module reloading is not advised

® Problem: Existing instances of classes will
continue to use old code after reload

® Problem: Doesn't update definitions loaded
with 'from module import name'

® Problem: Likely breaks code that performs
typechecks or uses super|()

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9.

|3

Locating Modules

® When looking for modules, Python first
looks in the same directory as the source
file that's executing the import

® |f a module can't be found there, an internal
module search path is consulted

>>> import sys

>>> sys.path

[y
'/usr/local/lib/python36.zip"',
'/usr/local/lib/python3.6"',
'/usr/local/lib/python3.6/plat-darwin’',
'/usr/local/lib/python3.6/1lib-dynload’,
'/usr/local/lib/python3.6/site-packages’]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9. |14

Module Search Path

® sys.path contains search path

® Can manually adjust if you need to

import sys
sys.path.append('/project/foo/pyfiles"')

® Paths also added via environment variables

% env PYTHONPATH=/project/foo/pyfiles python3

Python 3.6.0 (default, Jan 12 2017, 13:20:23)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)]

>>> import sys

>>> sys.path

['', '/project/foo/pyfiles',
'/usr/local/lib/python36.zip', ...]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9- 15

Exercise 9.1

|0 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9. 16

Organizing Libraries

® |t is standard practice for Python libraries to be
organized as a hierarchical set of modules that
sit under a top-level package name

packagename
packagename.foo
packagename.bar
packagename.utils
packagename.utils.spam
packagename.utils.grok
packagename.parsers
packagename.parsers.xml
packagename.parsers.json

® Other programming languages have a similar
convention (e.g., Java)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Creating a Package

® Jo create the module library hierarchy,
organize files on the filesystem in a
directory with the desired structure

packagename/
foo.py
bar.py
utils/
spam.py

grok.py
parsers/

xml . py
json.py

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-18

Creating a Package

® Add __init__ .py files to each directory

packagename/

___init__ .py

foo.py

bar.py

utils/
___init__ .py
spam.py
grok.py

parsers/
___init__ .py
xml .py
json.py

® These can be empty, but they should exist

9-19

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

Using a Package

® Once you have the _init__.py files, the import
statement should just "work”

import packagename.foo
import packagename.parsers.xml

from packagename.parsers import xml

® Almost everything should work the same way
that it did before except that import
statements now have multiple levels

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9-20

Fixing Relative Imports

® Relative imports of submodules don't work

spam/
__init__ .py # bar.py
foo.py import foo # Fails (not found)
bar.py

® The issue: Resolving name clashes between
top-level packages and submodules

spam/

__init__.py # bar.py

OS.py import os # ??? (uses stdlib)
bar.py

® imports are always "absolute” (from top level)

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.-21

Absolute Imports

® One approach : use absolute imports

spam/
__init .py
foo.py
bar.py

® Example:
bar.py

from spam import foo

\

® Notice use of top-level package name

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.22

Package Relative Imports

® Consider a package

spam/
___init .py
foo.py
bar.py
grok/
___init .py
blah.py

® Package relative imports

bar.py

from . import foo

Imports ./foo.py
from .foo import name

Load a specific name

from .grok import blah # Imports ./grok/blah.py

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-23

Package Environment

® Packages define a few useful variables

__package # Name of the enclosing package
__path_ _ # Search path for subcomponents

® Example:

>>> import xml

>>> xml. package_
'xml'

>>> xml. path

['/usr/local/lib/python3.5/xml"]
>>>

® Useful if code needs to obtain information
about its enclosing environment

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-24

Exercise 9.2

|0 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.1725

~init .py Usage

® What are you supposed to do in those files!?

® Main use: stitching together multiple source
files into a "unified" top-level import

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-26

Module Assembly

® Consider two submodules in a package

spam/ # foo.py
foo.py >

class Foo:

bar.py > | # bar.py

class Bar:

® Suppose you wanted to combine them

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.27

Module Assembly

® Combinein _init__ .py

spam/ # foo.py
foo.py >

class Foo:

bar.py > | # bar.py

class Bar:

__init__.py > | # init .py
from .foo import Foo
from .bar import Bar

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.78

Module Assembly

® Users see a single unified top-level package
import spam

f
b

spam.Foo ()
spam.Bar ()

® Split across submodules is hidden

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.-29

Case Study

® The collections "module"

® |t's actually a package with a few components

_collections.so collections/__init___.py
deque
defaultdict ——>| from collections import (
deque, defaultdict)

_collections_abc.py

Container ——| from collections_ abc import *
Hashable . _
Mapping class OrdererDict(dict):

class Counter(dict):

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9- 30

Controlling Exports

® Submodules should define _all

foo.py # bar.py
__all = ['Foo'] all = ['Bar']
class Foo(object): class Bar(object):

® Controls from module import *

® Allows easy combination in __init__ .py

init .py
from .foo import *
from .bar import *

all = [*foo. all , *bar. all]

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9- 31

Module Splitting

® Suppose you have a large module

spam.py

class Foo:

class Bar:

® You want to split it into multiple files

® But keep it as a single import

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9-32

Module Splitting

® Step |:Turn into a directory with multiple files

spam/ # foo.py
foo.py >

class Foo:

bar.py >

bar.py

class Bar:

® Split the code you wish

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9- 33

Module Splitting

® Step 2:Stitch back together in __init__ .py

spam/ # foo.py
foo.py >

class Foo:

bar.
Y > # bar.py

class Bar:

init .py > o
T T # init

-PY

from .foo import Foo
from .bar import Bar

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9- 34

Exercise 9.3

20 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9- 35

Circular Imports

® Great care must be given to circular imports
within a package

spam/base.py # spam/child.py
from . import child from .base import Base|e+— F3jls
class Base: class Child(Base):

® Follow the control-flow

® Definition order matters!

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9. 36

Circular Imports

® You may have to place imports somewhere else

spam/base.py # spam/child.py
class Base: from .base import Base|e— QK

class Child(Base):

from . import child

® Rule of thumb: Avoid circular dependencies

® Keep in mind: Not always practical

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9.37

Main Modules

® python -m module

® Runs a specified module as a main program

spam/
__init .py
foo.py
bar.py
bash % python3 -m spam. foo # Runs spam.foo as main

® Can use to enclose supporting scripts/applications
within a package

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9. 38

Main Entry Point

® main__ .py designates an entry point

® Makes a package directory executable

spam/
___init .py
___main_ _ .py # Starting module
foo.py
bar.py
bash % python3 -m spam # Run package as main

® More useful than you might think

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9- 39

Executable Subpackages

® Example

spam/
__init .py
foo.py
bar.py
test/

_init .py
__main__ .py ——>| bash % python3 -m spam.test
foo.py
bar.py

® Could have a variety of such tools/utilities
embedded within a package

® Nice feature: they stay with the package

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9- 40

Exercise 9.4

| 5 minutes

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9. 4|

More Information

® "Modules and Packages: Live and Let Die" -
PyCon 2015 Tutorial

http://www.dabeaz.com/modulepackage/

® More than you ever wanted to know...

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-42

Preparing For Distribution

® Suppose you want to give code to others
® Packaging is a constantly evolving topic

® Best bet: Look at the official docs

® https://packaging.python.org/en/latest/

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com,

9-43

That's it!

® You've reached the end!
® Thanks!

® |s there even more to learn! Yes.Always.

® | welcome your feedback: dave@dabeaz.com

® Courses: https://www.dabeaz.com/courses.html

Copyright (C) 2007-2023 (CC BY-SA 4.0), David Beazley, https://www.dabeaz.com, 9- 44

