
DESY. Page 1

Implementing an example satellite
Controlling a Keithley 2410

H. Wennlöf

27/11 -23

DESY. Page 2

Introduction

• I had old Python code around to control a Keithley
2400 series using a serial RS232 interface and
SCPI/SCPI-like commands

• Prime candidate for something we’ll want to use
Constellation for in the end

- E.g. ramping up and down voltages while logging
currents

• I made a prototype satellite for this purpose

- Should work for any 2400 series

- Made to source voltage, but with small tweaks can be
made to source current instead

DESY. Page 3

What needs to be implemented?

• Reminder: current state machine

• Need to implement the transitions to create a satellite

• Workflow:

- Derive from base class

- Override user transition functions

DESY. Page 4

What needs to be implemented?

• Transitions have corresponding functions

• These and the do_run() can be overridden to create a
Satellite derived from the base class

• Note: “reconfigure” would be relevant here (e.g.
changing voltage without first going back to the safe
level), but we don’t have a consensus on how to do that
yet

DESY. Page 5

Implementation

• Using pyserial for the communication with the Keithley

• Using YAML (and PyYAML) for writing and reading a
configuration file

- But this is of course easy to change, used this mainly bcause
it was used in the old code

• The goal:

- Ramping voltages up and down

- Publishing current values while the device output is active

• Not all transitions have to be implemented for this
satellite, but I did so anyway for demonstrational
purposes, just publishing log messages

• Prototype available on the Gitlab

class KeithleyControl(Satellite):

 """Constellation Satellite to control a Keithley2410."""

 def __init__(self, cmd_port, hb_port, log_port,
config_file):

 # Initialise

https://gitlab.desy.de/constellation/playground/edda-hackathon-1/-/blob/main/keithleySatellite.py?ref_type=heads

DESY. Page 6

Implementation
 def on_start(self):

 # Do nothing special, just keep on logging

 def on_stop(self):

 # Keep logging

 def do_run(self):

 # Doing nothing special here

 def on_failure(self):

 # Stop current-publishing thread

 # Ramp down

 def on_interrupt(self):

 # Stop current-publishing thread

 # Ramp down

 def on_recover(self):

 # Do nothing here

 def on_reset(self):

 # Remove device

class KeithleyControl(Satellite):

 """Constellation Satellite to control a Keithley2410."""

 def __init__(self, cmd_port, hb_port, log_port, config_file):

 def on_load(self):

 # Create the device, which loads the config

 def on_unload(self):

 # Unload config, reset everything to default

 def on_launch(self):

 # Ramp to safe voltage before anything else

 # ramp to V_Set

 # Start publishing the current

 def on_land(self):

 # Stop current-publishing thread

 # ramp to safe

DESY. Page 7

Implementation

• Rather simple satellite;

- Creating device and loading config into it in on_load()
- Ramping voltage and starting logging thread (i.e. publishing

“CURRENT” stats) in on_launch()
- Ramping down and stopping logging thread in on_land(),

on_failure(), on_interrrupt()
- Disconnecting and removing device in on_unload() and

on_reset()

• Seems to work nicely with logging and controller!

- We’ve played with both receiving logs and stats, and
controlling the Keithley over the network

Backup slides

	Slide 1
	Introduction
	What needs to be implemented?
	What needs to be implemented?
	Implementation
	Implementation
	Implementation
	Slide 8

