Energy resolution dependence on the tile gaps' width, for tilted beam

Kamil Zembaczyński¹

Advisors: Aleksander Filip Żarnecki¹, Grzegorz Grzelak¹

¹University of Warsaw

Collabora H in precision de

LumiCal results

Slide from
"Tile gaps and
energy resolution in
LumiCal" by
Jonathan Aguilar
and Bogdan Pawlik
IFJ-PAN, Krakow

Energy Loss in Gaps

Analysis setup

- Files used: mc21.singlePositron_*GeV_ECALP_run2.G4gun.SIM.se0003.root,
- Single positron hitting centre of the ECAL-P perpendicularly with energy from 2.5 to 15 GeV with 2.5GeV step, 20k events, 320µm silicon sensor,
- Plain silicon layer in MC → structure of sensors and pads implemented in the analysis,
- Default position of the gun is such that positron hits in the middle of the gap (dead area) between 3rd and 4th sensor,

Previous results

Previous results

1.52mm gap

Previous results

$$\frac{\sigma}{E}(E) = \sqrt{\frac{a^2}{E} + b^2}$$

Previous results and conclusions

- Significant worse (from 35% to 55% worse that reference) of resolution when particle hits center of the tile gap
- Cascade core is very narrow → even small tile gap impacts resolution
- If the hit is located more than 3mm from the centre of the tile gap, resolution hardly depends on the width of the gap

Approximation of tilted beam

- No MC with positrons hitting ECAL-P at an angle
- Inclined trajectory of a positron can be approximated by small shift of each layer

Remarks on the approximation

- n^{th} layer is shifted by $n \cdot d \cdot tan(\theta)$, θ incident angle, d thickness of the layer
- Effective thickness of each layer increases as 1/cos(θ) which is not taken into account
- Analysis was performed for 1.52mm (1.32mm dead sensor edge and 0.2mm physical gap) gap and following angles:
 0°, 1°, 3°, 5°, 7°, 10° (and 15°)
- Angles were chosen basing on the MC simulation with magnetic field

Distributions of angles from MC with magnetic field

2.5GeV

15GeV

Deposited energy vs position, 2.5GeV

Deposited energy vs position, 5GeV

Deposited energy vs position, 7.5GeV

Deposited energy vs position, 10GeV

Deposited energy vs position, 12.5GeV

Deposited energy vs position, 15GeV

Resolution vs position, 2.5GeV

Resolution vs position, 5GeV

Resolution vs position, 7.5GeV

Resolution vs position, 10GeV

Resolution vs position, 12.5GeV

Resolution vs position, 15GeV

Assymetry in plot with resolution

Assymetry in plot with deposit

a parameter vs position

b parameter vs position

Conclusions

- Effect of the presence of the gap is not negligible even for larger angles (10°-15°)
- Thus it has to be taken into consideration in positron's spectrum reconstruction
- Our current understanding: two main factors affecting resolution:
 - Energy loss in gap → smaller number of deposits
 - → larger Poisson fluctuations (reflected in a parameter)
 - Transverse profile fluctuations → gap loss fluctuations (reflected in b parameter)

Backup slides

