TB 2022

Automatic Alignment Method

29 / 11 / 23

Kirill Smagloy

- Michal's method Hough Transform
- The method in this presentation(Itamar's method) Scan and search max hits in pad

Alignment Program

- Currently the program works with the runs on the sensors ANTON 1, YAN 1, Calice 75, Calice 74
- The program recognizes the pad length, and the noisy/dead pads of each sensor
- For the GaAs sensors, inverts the x_dut coordinate before aligning

The Method

Run_4475

Run_4475

Run_4475

Run_4475

Run_4475

Run_4475

Run_4475

Run_4475

Run_4475

The alignment process consists of four major steps:

- First Step Finding the "leading" pads(Above 4.5% of the total entries)
- Second Step Shift-aligning one corner pad, to avoid rotation effects
- Third Step Rotating all the pads together
- Fourth Step Final shift-alignment of the rotated pads

Run 4475 – ANTON 1 sensor

The alignment process consists of four major steps:

- First Step Finding the "leading" pads(Above 4.5% of the total entries)
- Second Step Shift-aligning one corner pad, to avoid rotation effects
- Third Step Rotating all the pads together
- Fourth Step Final shift-alignment of the rotated pads

Run 4475 – Step 1

*Each color represents a different pad

- The alignment process consists of four major steps:
- First Step Finding the "leading" pads(Above 4.5% of the total entries)
- Second Step Shift-aligning one corner pad, to avoid rotation effects
- Third Step Rotating all the pads together
- Fourth Step Final shift-alignment of the rotated pads

Run $4475 - Step 2_{Run_4475 - pad (12,3)}$

Run 4475 – Step 2

Run_4475

- The alignment process consists of four major steps:
- First Step Finding the "leading" pads(Above 4.5% of the total entries)
- Second Step Shift-aligning one corner pad, to avoid rotation effects
- Third Step Rotating all the pads together
- Fourth Step Final shift-alignment of the rotated pads

Run 4475 – Step 3 Run_4475 hist_0 y_stl Entries 19551 3.221 Mean x 2.675 Mean y 1.245 Std Dev x Std Dev y 1.397

Run 4475 – Step 3 Run_4475 hist_0 Entries 19551 Mean x 3.266 Mean y 2.618 Std Dev x 1.245 Std Dev y 1.397 15

x_stl

- The alignment process consists of four major steps:
- First Step Finding the "leading" pads(Above 4.5% of the total entries)
- Second Step Shift-aligning one corner pad, to avoid rotation effects
- Third Step Rotating all the pads together
- Fourth Step Final shift-alignment of the rotated pads

Run 4475 – Step 4

Run_4475

To Summarize

Run 4475 – Initial

Run 4475 – Aligned

Run_4475

Run 4475 – Aligned Run_4475 hist 0 Entries 19551 12.66 Mean x Mean y 3.524 0.2503 Std Dev x 0.2793 Std Dev y Bulges? 4.5 16

Run 4475 – Aligned

Comparing Results – Run 4475

Kirill's, Michal's alignment:

Pad (13, 3)(Yellow) is: 99.02%, 99.09%

Pad (13, 4)(Green) is: 97.61%, 97.60%

Pad (14, 3)(Gray) is: 98.71%, 98.66%

Pad (14, 4)(Black) is: 97.79%, 97.74%

Run 4417 – Calice 75 sensor

Run 4417 — Initial

Run 4417 – Aligned Run_4417 hist_0 237758 Entries 8.549 Mean x Mean y 5.537 Std Dev x 0.2694 Std Dev y 0.2814 5.5

Run 4417 – Aligned

Comparing Results – Run 4417

Kirill's, Michal's alignment:

Pad (8, 5)(Red): 98.34%, 98.62%

Pad (8, 6)(Blue): 98.60%, 98.65%

Pad (9, 5)(Yellow): 98.45%, 97.55%

Pad (9, 6)(Green): 97.91%, 98.40%

Additional Plots

 The program plots the numbers of entries as a function of each shift for us to make sure that there was a unique maximum

Step 2 – Axis shifts for one pad

-726

Step 3 – Rotation Shifts

Step 4 – Axis shifts for all pads

Problems

- The program takes about 5.5-7.5 minutes to align completely for each individual run
- "Bulges" on the upper row of each run

Problems

- The program takes about 5.5-7.5 minutes to align completely for each individual run
- "Bulges" on the upper row of each run

Run 4417 – Aligned Run_4417 hist_0 237758 Entries 8.549 Mean x Mean y 5.537 Std Dev x 0.2694 Std Dev y 0.2814 5.5

Run_4417

Run 4417 - Pad (9,6) (Green):

- Green Plot Projection on the bulge
- Red Plot Projection on the middle of the pad
- Blue Plot Projection on a part without a bulge

- The bulges are notable visually, but the percentage is relatively low
- The bulges always occur on the upper row, independent of sensor and run number(before the alignment as well)
- We suspect that they come from a property of the telescope, and will use them to determine it's resolution

Run_4417

Questions?

Thank You For Listening ©