

Faculty of Physics

Multi-Messenger Cosmology

Dominik Schwarz

Multi-Messenger Astrophysics 2024, Görlitz

LoTSS-DR2 — Northern extragalactic LOFAR Two-meter Sky Survey

3C303 - AGN @ z = 0.14

Images prepared with ESA-Sky tool

Cosmology — a traditional multi-messenger science The three classical pillars (already in last century)

Friedmann-Lemaître Models

aître-Hubble Expansion

 H_0, t_0

meval Nucleosynthesis

 $\Omega_{\rm B}$

Cosmic Microwave Background

Lemaître-Hubble expansion cepheids, SN1a, ...

Primeval Nucleosyntheis element abundance

Cosmic Microwave Background spectrum, monopole & dipole

Why Multi-Messenger Cosmology What could we learn?

Understand the evolution of the Universe

Solve equations of motion for initial conditions and compare to data. Improve model and start over.

Multiple messengers to maximise space-time coverage.

Multi-Messenger Cosmology The current state

- Cosmological Principle allows predictions without initial conditions
- Lambda Cold Dark Matter model allows us to describe all observations, but leaves us with 95% of unknowns in its energy budget
- Cosmological parameters from individual missions (Planck, Euclid, ...)
- Combination of multi-wavelength and multi-messenger probes naturally leads to tensions, H_0 , S_8 , curvature, matter dipole, ...
- In the following 3 examples for synergies

radio and quasar source count dipole direction agrees, amplitude disagrees with CMB

Wagenveld, Klöckner, Schwarz 2023

Pantheon compilation of SN1a consistent with CMB Horstmann, Pietschke, Schwarz 2022

Large Scale Structure Synergies Now: LOFAR, Planck and photo-z — Soon: LOFAR2.0 & Euclid

A window to the very early Universe Lepton asymmetry, primordial black holes, and LIGO/VIRGO data

Unknown lepton (flavour) asymmetry of Universe Influences cosmic QCD epoch @ $T\sim 150~{\rm MeV}$

equation of state softens at QCD transition and pion/muon annihilation epoch \Rightarrow PBHs

Green: lepton asymmetry follows baryon asymmetry I = 51/28 b Red: I = 0, but large lepton flavour asymmetry in μ and τ Blue: I = 0, but large lepton flavour asymmetry in e, μ , and τ

Prediction of PBHBM as function of lepton asymmetry Compare to LIGO/VIRGO (01-3)

Bödeker, Kühnel, Oldengott, Schwarz 2021

Conclusions Opportunities for the DZA

- Excess source count dipole needs to be understood, same for H_0, σ_8, \dots
- Check "established" cosmology by independent methods
- Look into data that do not address your science question — you might find an answer

- Combining SKA and ET @ DZA offers fantastic potential for many synergies
- Instrumentation, pipelines, and data analysis need theory to maximise Rol

Backup Cosmic source count dipole forecasts for SKA

- CMB dipole
- structure dipole
- kinematic & structure dipole
- kinematic & structure dipole, w/o local structure

SKA Cosmology SWG: Bacon et al. 2020

Backup LOFAR Two-metre Sky Survey DR2

600 800 1000 1200 1400 1600 Source Density per sq. deg

Hale et al. 2024

Backup **Cosmic trajectory in QCD epoch**

V. Gashi, master thesis 2024

