Original MM idea: high energy ν 's and γ 's arise from UHECR interactions

BERGISCHE UNIVERSITÄT WUPPERTAL

Karl-Heinz Kampert Bergische Universität Wuppertal

Multi-Messenger Aspects of CR and UHE-Astrophysics

Finding and understanding the sources of the most powerful cosmic accelerators drives the entire field !

proton

Joint DZA, KAT, RDS Workshop Görlitz, March 26-27, 2024

direction, time, energy

direction, time, waveform

GW

direction, time, energy

direction, (time), particle type, energy Note, CRs delayed wrt GW, γ, v

By construction, a CR observatory is in general also a gamma, neutrino, and neutronobservatory

Moreover, MM physics is more than MWL and more than studying transient events (ToOs)

UHECR Hybrid Multi-Particle Observatories

charged particles

Telescope Array Utah (USA), 700 km² to be extended to 2800 km²

Karl-Heinz Kampert - University of Wuppertal

Pierre Auger Observatory Argentina, 3000 km²

just upgraded to AugerPrime VERTICAL (0-60°)

Fluorescence light

electrons. muons, radio-signals

Auger: A 4π MM Observatory

1 Neutrons and charged CRs: $\Theta \leq 80^{\circ}$

Karl-Heinz Kampert - University of Wuppertal

2 Photons: $30^{\circ} \le \Theta \le 60^{\circ}$ zenith range to be extended

3 Down-Going Neutrinos: $60^{\circ} \le \Theta \le 90^{\circ}$

Earth Skimming Neutrinos: $90^{\circ} \le \Theta \le 95^{\circ}$ extremely sensitive to EeV neutrinos

RECR RECR observatories CONTADIA

Karl-Heinz Kampert - University of Wuppertal

What COCRS and UHECR observatories GONUT JUG to MM physics P

- Constraining EHE source classes by anisotropies
- Robust input to flux calculations of cosmogenic neutrinos and photons
- Unprecedented sensitivity to EHE neutrinos and photons by UHECR observatories
- Constraining redshift evolution of UHECR sources
- Start to constrain galactic and extragalactic B-fields
- Constrain bursting source scenarios

Constraining EHE (10²⁰ eV) source properties:

- a) source luminosity × volume density
- b) maximum rigidity
- c) chemical environment

→ partner in transient follow-up searches

 \bullet \bullet \bullet

UHECR Energy Spectrum

Pierre Auger Coll., PRD 2020, PRL 2020 (twice editor's choice)

Karl-Heinz Kampert - University of Wuppertal

Physics See Viewpoint: The Anatomy of Ultrahigh-Energy Cosmic Rays

Pierre Auger Coll., PRD 2020, PRL 2020 (twice editor's choice)

Karl-Heinz Kampert - University of Wuppertal

UHECR Luminosity

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

UHECR Luminosity

Measurement of local CR energy density

$$\varepsilon_{CR} = 4\pi/c \int_{E_{ankle}}^{\infty} E \cdot Flux(E) dE$$

 $= (5.66 \pm 0.03 \pm 1.40) \cdot 10^{53} \text{ erg Mpc}^{-3}$

→ source luminosity density

 $\mathscr{L} \sim \varepsilon_{CR}/t_{loss} = 2 \cdot 10^{44} \,\mathrm{erg}\,\mathrm{Mpc}^{-3}\,\mathrm{yr}^{-1}$

Typical energy loss time $t_{\rm loss} \sim 1 \,{\rm Gpc/c}$ at $E_{\rm ankle} = 5 \cdot 10^{18} \,{\rm eV}$ Full calculation with SimpProp: $\mathscr{L} \simeq 6 \cdot 10^{44} \, \mathrm{erg} \, \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$

UHECR Luminosity and Acceleration Requirements

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

Karl-Heinz Kampert - University of Wuppertal

Testing Correlation with Catalogues

Karl-Heinz Kampert - University of Wuppertal

CR Energy Spectrum and Mass Composition

 $\log(R_{max}) = 18.15$ V \Rightarrow end of CR spectrum rather a source than a propagation effect ! very hard nuclear spectra escaping from sources (assuming steady EG sources)

down by orders of magnitude

Bounds on cosmogenic neutrino fluxes

Karl-Heinz Kampert - University of Wuppertal

Karl-Hei

Neutrinos in

Signal (VEM peak)

Karl-Hei

Upper limits on the diffuse

EeV Photon Limits challenge protons suffering GZK-losses

E₀ [km⁻² sr⁻¹ yr⁻¹] Ш Integral photon flux for

Similarly, photon upper limits start to constrain cosmogenic photon fluxes of p-sources and SHDM models

Karl-Heinz Kampert - University of Wuppertal

Auger Collaboration, JCAP04 (2017) 009; Universe (2022) 8, 579; JCAP05 (2023) 021

Neutrino Upper Limits for GW170817

Karl-Heinz Kampert - University of Wuppertal

Absence of neutrinos consistent with SGRB viewed at $>20^{\circ}$ angle

May have seen neutrinos if jet were pointing towards us

LIGO, ANTARES, IceCube, Auger, The Astrophys. J. Lett. 850 (2017) L35

see also Samaya's talk

Isotropic Neutrino Luminosity Bound from BBHs

M. Schimp; Auger Collaboration, PoS (ICRC2021) 968, subm. to ApJ 2024

Karl-Heinz Kampert - University of Wuppertal

New generation of complex model scenarios

Interplay between confinement in source and disintegration of nuclei: hard energy spectra (Aloisio et al. 2014, Taylor et al. 2015, Globus et al. 2015, Unger et al. 2015,

Fang & Murase 2017)

Reverse shock scenario in **Iow-Iuminosity Iong GRBs** (Zhang, Murase et al 2019+)

Tidal disruption events (TDEs) of WD or carbon-rich stars

(Farrar, Piran 2009, Pfeffer et al. 2017, Zhang et al 2017)

One-shot acceleration in rapidly spinning **neutron stars** (Arons 2003, Olinto, Kotera, Feng, Kirk ...)

Karl-Heinz Kampert - University of Wuppertal

Cen-A burst & deflection on **Council of Giants**, solving isotropy and source diversity problem (Taylor et al. 2023)

Relativistic reflection of existing CR population (Biermann, Caprioli, Wykes, 2012+, Blandford 2023)

Snowmass Whitepaper

- UHECR whitepaper prepared for U.S. Snowmass survey which is about *particle physics* in the next decade(s)
 - WP covers particle and astrophysics aspects of UHECR
 - almost 100 authors + 200 + endorsers
 - 283 pages (with front- and back-matter)
 - to be published in Astroparticle Physics
- Input from the community via workshops and via topical conveners
- WP makes general recommendations and outlines a plan for experiments over the next decades
 - caveat: Snowmass targets U.S. funding agencies and particle physics community

see references in WP for material shown here: https://arxiv.org/pdf/2205.05845

R. Aloisio⁶, J. Alvarez-Muñiz⁷, R. Alves Batista⁸, D. Bergman⁹, M. Bertaina¹⁰, L. Caccianiga¹¹, O. Deligny¹², H. P. Dembinski¹³, P. B. Denton¹⁴, A. di Matteo¹⁵, N. Globus^{16,17}, J. Glombitza¹⁸, G. Golup¹⁹, A. Haungs⁴, J. R. Hörandel²⁰, T. R. Jaffe²¹, J. L. Kelley²², J. F. Krizmanic⁵, L. Lu²², J. N. Matthews⁹, I. Mariş²³, R. Mussa¹⁵, F. Oikonomou²⁴, T. Pierog⁴, E. Santos²⁵, P. Tinyakov²³, Y. Tsunesada²⁶, M. Unger⁴, A. Yushkov²⁵

M. G. Albrow²⁷, L. A. Anchordoqui²⁸, K. Andeen²⁹, E. Arnone^{10,15}, D. Barghini^{10,15}, E. Bechtol²², J. A. Bellido³⁰, M. Casolino^{31,32}, A. Castellina^{15,33}, L. Cazon⁷, R. Conceição³⁴, R. Cremonini³⁵, H. Dujmovic⁴, R. Engel^{4,36}, G. Farrar³⁷, F. Fenu^{10,15}, S. Ferrarese¹⁰, T. Fujii³⁸, D. Gardiol³³, M. Gritsevich^{39,40}, P. Homola⁴¹, T. Huege^{4,42}, K.-H. Kampert⁴³, D. Kang⁴, E. Kido⁴⁴, P. Klimov⁴⁵, K. Kotera^{42,46}, B. Kozelov⁴⁷, A. Leszczyńska^{1,36}, J. Madsen²², L. Marcelli³², M. Marisaldi⁴⁸, O. Martineau-Huynh⁴⁹, S. Mayotte³, K. Mulrey²⁰, K. Murase^{50,51}, M. S. Muzio⁵⁰, S. Ogio²⁶, A. V. Olinto², Y. Onel⁵², T. Paul²⁸, L. Piotrowski³¹, M. Plum⁵³, B. Pont²⁰, M. Reininghaus⁴, B. Riedel²², F. Riehn³⁴, M. Roth⁴, T. Sako⁵⁴, F. Schlüter^{4,55}, D. Shoemaker⁵⁶, J. Sidhu⁵⁷, I. Sidelnik¹⁹, C. Timmermans^{20,58}, O. Tkachenko⁴, D. Veberič⁴, S. Verpoest⁵⁹, V. Verzi³², J. Vícha²⁵, D. Winn⁵², E. Zas⁷, M. Zotov⁴⁵

Ultra-High-Energy Cosmic Rays The Intersection of the Cosmic and Energy Frontiers

CONVENERS

A. Coleman¹, J. Eser², E. Mayotte³, F. Sarazin^{†3}, F. G. Schröder^{†1,4}, D. Soldin¹, T. M. Venters^{†5}

TOPICAL CONVENERS

CONTRIBUTORS

[†]Correspondence: fsarazin@mines.edu, fgs@udel.edu, tonia.m.venters@nasa.gov

Summary and Conclusions

- 10²⁰ eV regime accessible only by cosmic rays
- UHECRs provide important input to Multi-Messenger physics e.g. EHE neutrinos and photons, source composition, interactions within sources, burst rates,...
- ... and benefit from several other observations incl. B-fields, neutrinos, photons, GWs...
- UHECR observatories Partner in follow-up observations ACME within Europe, AMON in USA

Multi-Messenger Astrophysics of key importance to understand EHE Universe

