

May 23rd, 2024

Status of the Sardinia site

Davide Rozza on behalf of the Sardinian site characterization team

Site Characterization at the candidate sites is coordinated in the framework of the ET Collaboration Site Preparation Board.

Einstein Telescope will be built underground to operate below 10 Hz. Potential noise sources, both natural and anthropic origin, Can affect the Einstein Telescope measurements.

WE WILL SEE THAT THE ITALIAN CANDIDATE SITE IS CHARACTERISED BY:

Geodynamic quietness

Low Anthropogenic noise

Low E.M. noise 3

2010, first analysis was performed in the Sos Enattos mine.

The mine was not abandoned; therefore, it provided the adequate manpower, infrastructure and experience to start underground characterization studies in **2014**.

Today, the mine is considered a regional heritage site, it hosts the SARGRAV LABORATORY and the ARCHIMEDES EXPERIMENT.

The ET Italian candidate site is located in the stable VARISCAN BASEMENT OF SARDINIA

LITHOLOGIES: Orthogneiss, granitoids, micaschists.

P2 and P3 are the borehole locations optimization is ongoing.

Earthquake List Instruments ISIDe Scientific Products

Seismic Station SENA Sos Enattos Mine

Network: IV Start Date: 2019-10-18T00:00:00 End Date: --Latitude: 40.4444 Longitude: 9.4566 Elevation: 338 Download StationXML

Number of channels: 3

Channel List

Code	Location Code	Start Date	End Date	Data Restriction
HHE		18-10-2019		open
	Latitude: 40.4444		Azimuth: 90	
	Longitude: 9.4566		Sample Rate: 100	
	Elevation: 338		Storage Format: Steim:	2
	Denth: 111		Sensitivity Value: 478760000	

SOE2 station is integrated into the Italian national seismometer **network of INGV**. Station: **SENA**, network:

- IV (Italian National Seismic Network INSN), 2019-2022/01
- MN (*Mediterranean Very Broadband Seismographic Network*) since 2022/02

http://cnt.rm.ingv.it/en/instruments/station/SENA

Einstein Telescope

PERMANENT ARRAY since 2021

Since 2021, more permanent sensors have been installed at 2 of the proposed vertices (P2, P3)

2 broadband seismometers on surface

2 broadband seismometers in borehole

2 magnetometers at P2

PPSD - P2 borehole seismometer

Very low noise background in the 2-10 Hz band, sometimes even below the Peterson's New Low Noise Model!

10

TEMPORARY ARRAY for seismic properties and Newtonian noise purposes

Sos Enattos broadband array (January 2021)

P2 broadband array + geophones (September 2021) P3 broadband array + geophones (July & Oct 2021)

Wind Park broadband array (early 2023) ¹¹

IDENTIFICATION of some potential noise sources, both of natural and anthropic origin

Sea waves

Microseismic (0.05-1Hz) coming from waves in the Gulf of Lion (~0.22Hz,NW Mediterranean sea) and Atlantic ocean depending on weather conditions and season.

At higher frequencies, anthropic noise pattern observed.

Identificationofthenoisecontributionfromtwobridges(peaks at ~4.2 Hz, 4.6 Hz, 6 Hz).

Updates and improves of the resolution of the dispersion curves for compressional and shear wave velocities.

The **Budussò Wind Park**: one of the largest wind parks in Italy. 69 turbines (~2 MW each).

A total of **130 MW installed**.

Blades motion is **transferred** to tower and to the ground.

Seismic noise propagates as surface waves

Generated noise is found in the **1-10 Hz** frequency band.

4.5

5

MAGNETIC NOISE

Most important mechanism in ET-LF:

- Geomagnetic pulsations Pc1 (0.2-5Hz);
- Schumann resonances (5-100Hz)

Artificial LF sources (e.g. 50-60Hz powerlines)

INFRASOUND MEASUREMENTS

4 microphones installed along the underground tunnels for long term characterization in a joint Italian-Polish-Hungarian collaboration (*PolGrav-AstroCeNT, Wigner Research Centre*)

credit: T. Bulik

PUBLICATIONS:

- □ L. Naticchioni et al., *Microseismic studies of an underground site for a new interferometric gravitational wave detector*, CQG, 2014, <u>https://doi.org/10.1088/0264-9381/31/10/105016</u>
- □ L. Naticchioni et al., Characterization of the Sos Enattos site for the Einstein Telescope, JPCS 1468, 2020, https://doi.org/10.1088/1742-6596/1468/1/012242
- M. Di Giovanni et al., A seismological study of the Sos Enattos Area the Sardinia Candidate Site for the Einstein Telescope, SRL, 2020 <u>https://doi.org/10.1785/0220200186</u>
- A. Allocca et al., Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency, EPJP, 2021 <u>https://doi.org/10.1140/epjp/s13360-021-01450-8</u>
- Allocca et al. Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site, Eur. Phys. J. Plus 136, 1069 (2021). <u>https://doi.org/10.1140/epjp/s13360-021-01993-w</u>
- M. Di Giovanni et al., Temporal variations of the ambient seismic field at the Sardinia candidate site of the Einstein Telescope, Geophysical Journal International, 2023, <u>https://doi.org/10.1093/gji/ggad178</u>
- □ G. Saccorotti et al., Array analysis of seismic noise at the Sos Enattos mine, the Italian candidate site for the Einstein Telescope, 2023, https://doi.org/10.1140/epjp/s13360-023-04395-2.
- L .Naticchioni et al., Results of the site characterization in Sardinia for the Einstein Telescope, PoS Proc. Sci., 2023, accepted for publication.

+ several internal notes, reports and talks

NEWS and UPDATES

EINSTEIN TELESCOPE: CORDATA DI AZIENDE E GUIDATA DA ROCKSOIL SI AGGIUDICA **GARA DA OLTRE 12 MILIONI DI EURO**

🛟 terabit

E Instein Telescone

Preliminary feasibility study for ET in Sardinia on going (both Δ and L).

Management and strategy of excavation). Bidbook to end 2025 Bidbook to end 2025

Optimization of ET localization

Sos Enattos area will be reached at 1 TB/s (TeraBit project)

Acoustic campaign at P2 & P3 borehole areas

Gravimetric campaign

The geo-physical site characterization is a task coordinated by SPB of the ET collaboration.

Site characterization is strictly related to the noise mitigation strategy and detector design.

LF sources of noise (2-10Hz) affected by **seismic** (\rightarrow **Newtonian**) and **magnetic** noise.

Sardinia is geologically very quiet, far from active fault lines, and characterized by low anthropic noise.

Since 2019 (and before in 2010-2014), we installed **permanent and temporary arrays** of sensors and **two instrumented boreholes** (operative since 2021).

Measurements show a peculiar very low level of seismic noise in the ET-LF band (2-10Hz), where:

Seismic noise match or goes even	The projected (seismic) Newtonian	Electromagnetic	Acoustic noise measuremement
below the Peterson's NLNM	noise is also compatible with ET_d	noise is very low	ongoing (also very quite)

Possible **local sources** of noise (e.g. wind farms) are under study.

From the geological and physical point of view, Sardinia is an optimal candidate to host the Einstein Telescope, either in Δ or in L (\rightarrow 2 sites) configuration!

Olbia

Onanì

A fruitful collaboration!

The geophysical characterization is a great and fruitful example of **collaboration** between Italian Research Institutes (INFN & INGV), that have brought together **different and complementary skills and expertise** to demonstrate the **extraordinary quality** of the Sardinia candidate site to host ET.

