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In memory of Stefano Catani 

Pioneer of perturbative QCD and resummation, with many 
seminal contributions: soft-gluon resummation, jets (kT 
algorithm), IR singularities (Catani formula), algorithms for 
fixed-order computations (Catani-Seymour, qT subtraction) 
and merging (CKKW), small-x resummation (CCFM, CH)…   



In processes involving disparate scales Q ≫ Q0, 
higher-order corrections are enhanced by large 
logarithms 

which can spoil perturbative expansion. Maximum 
power of logarithms depends on problem 

• Single logarithmic: m ≦ n  
• Sudakov (soft + collinear): m ≦ 2n   

Resum enhanced contributions to all orders. 
• Count ln(Q/Q0) ~ 1/αs   

• Systematic expansion: LL, NLL, NNLL, …  
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Resummation techniques 

• diagrammatic methods, factorization theorems, 
evolution equations (direct QCD) 

• parton showers MCs 

• Soft-Collinear Effective field Theory (SCET) 

• integrate out physics at high scale 

• renormalization group evolution to resum 
logarithms



small masses

 non-relativistic

threshold
soft radiation

jets

small qT

large rapidity

Many types of scale hierarchies, many different types 
of resummations … and by now many different EFTs

5

…



Today’s lecture
• Detailed discussion of the qT spectrum in Drell-Yan production 

• motivation: MW and αs determination 
• basics 

• break down of fixed-order prediction at low qT 

• counting of large logarithms 

• exponentiation and resummation 
• organization of the resummed result 

• SCET versus direct QCD 
• uncertainty estimate 
• switching off and matching 

• factorization theorem 

•  resultsNnLL



Tomorrow’s lecture
• QCD made simpler: the physics of soft and 

collinear emissions  
• factorization of soft and collinear emissions 

• Jet physics and soft emissions 
• Non-global logarithms 
• Superleading logarithms



Parton shower MC’s

fixed order

Higher-log resummation?

(a slide from MC school in  2015)



• analytical 

• simple observables 

•  accuracy (by 
now up to n=4!) 

• exact color 

• non-perturbative matrix 
elements, fits

NnLL

• numerical 

• fully general 

•   + many 
subleading effects + 
tuning 

• large-Nc  limit  + some 

• hadronization models

LL

In the past, not too much cross talk between parton 
shower MCs and resummation



Development of parton showers which 
systematically include higher-log effects Deductor, 
PanScales, Alaric, … → Melissa’s lecture

[59], a critical novel aspect is how we isolate the structure
of NLL terms αnsLn. For each given observable v, with
L ¼ ln v, we consider the ratio to the true NLL result in the
limit αs ≡ αsðQÞ → 0 with fixed αsL. This helps us isolate
the NLL terms from yet higher-order contributions, which
vanish in that limit. Numerically, a parton shower cannot
be run in the αs → 0 limit for fixed αsL. However, with
suitable techniques [51] (Sec. 6), [60–62], one can run
multiple small values of αs and extrapolate to αs ¼ 0. We
examine not just our showers, but also our implementations
of two typical kt-ordered shower algorithms with dipole-
local recoil, those of PYTHIA8 [2] and DIRE V1 [11] [with the
αs þ Kα2s choice as in Eq. (4)].
A first test concerns the multiple-emission matrix

element. We have constructed our showers specifically
so that they reproduce the squared matrix elements in the
limits discussed above that are relevant for NLL accuracy.
A simple observable for testing this is to consider the two
highest-kt Lund-plane primary declusterings [63,64] with
transverse momenta kt1 and kt2 (originally defined for
hadronic collisions, the eþe− analogue is given in Sec. 4
of the Supplemental Material [51] and implemented with
FASTJET [65]). The αs → 0 limit for fixed αsL
(L ¼ ln kt1=Q), ensures that the two declusterings are soft
and widely separated in Lund-plane pseudorapidity η
(which spans jηj≲ jLj ∼ 1=αs). In this limit the full matrix
element reduces to independent emission and so the
difference of azimuthal angles between the two emissions,
Δψ12, should be uniformly distributed, for any ratio kt2=kt1
(recall that strongly angular-ordered soft emission is not
affected by spin correlations). We consider the Δψ12

distribution in Fig. 1.
The left-hand plot of Fig. 1 shows the PYTHIA8 dipole

algorithm (not designed as NLL accurate), while the middle
plot shows our PanGlobal shower with β ¼ 0. The dipole

result is clearly not independent of Δψ12 for αs → 0, with
over 60% discrepancies, extending the fixed-order conclu-
sions of Ref. [37]. The discrepancy is only ≃30% for gg
events (not shown in Fig. 1), and the difference would, e.g.,
skew machine learning [67] for quark versus gluon dis-
crimination. PanGlobal is independent of Δψ12. The right-
hand plot shows the αs → 0 limit for multiple showers. The
overall pattern is as expected: PanLocal works for β ¼ 0.5,
but not β ¼ 0, demonstrating that with kt ordering it is not
sufficient just to change the dipole partition to get NLL
accuracy. PanGlobalworks for β ¼ 0 and β ¼ 0.5. (Showers
that coincide forαs → 0, e.g., DIREV1 and PYTHIA8, typically
differ at finite αs, reflecting NNLL differences.)
Next, we consider a range of more standard observables

at NLL accuracy. They include the Cambridge
ffiffiffiffiffiffi
y23

p

resolution scale [68], two jet broadenings, BT and BW
[69], fractional moments, FC1−βobs , of the energy-energy
correlations [47], the thrust [70,71], and the maximum ui ¼
kti=Qe−βobsjηij among primary Lund declusterings i. Each of
these is sensitive to soft-collinear radiation as kt=Qe−βobsjηj,
with the βobs values shown in Fig. 2 (right). Additionally,
the scalar sum of the transverse momenta in a rapidity slice
[72], of full-width 2, is useful to test nonglobal logarithms
(NGLs). These observables all have the property that their
distribution at NLL can be written as [47,66,72–74]

Σðαs; αsLÞ ¼ exp ½α−1s g1ðαsLÞ þ g2ðαsLÞ þOðαnsLn−1Þ&;
ð6Þ

where Σ is the fraction of events where the observable is
smaller than eL (g1 ¼ 0 for the rapidity slice kt). We also
consider the kt-algorithm [75] subjet multiplicity [76],
Sec. 5 of the Supplemental Material [51].
Figure 2 (left) illustrates our all-order tests of the shower

for one observable,
ffiffiffiffiffiffi
y23

p
. It shows the ratio of the Σ as

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of αs ln y23=2, for
αs → 0. Right: summary of deviations from NLL for many shower and observable combinations [either Σshowerðαs → 0; αsL ¼
−0.5Þ=ΣNLL − 1 or ½Nsubjet

showerðαs → 0; αsL2 ¼ 5Þ=Nsubjet
NLL − 1&= ffiffiffiffiffi

αs
p

]. Red squares indicate clear NLL failure; amber triangles indicate
NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

PHYSICAL REVIEW LETTERS 125, 052002 (2020)

052002-4

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez ‘20

The situation has changed!



Amplitude evolution, development of full color 
showers. Deductor Nagy, Soper, CVolver Plätzer, 
Sjodahl, De Angelis, Forshaw, Holguin, … 

De Angelis, Forshaw, Plätzer ‘21

of SUð3Þc, depending on the number of hard and soft
partons considered at the current state of the algorithm.
Soft gluon evolution proceeds iteratively starting from
a hard-scattering operator, H ¼ jMihMj with A0ðEÞ ¼
VE;QHV†

E;Q. A general observable Σ can be computed
using

ΣðμÞ ¼
Z X

n

dσnunðk1; k2;…; knÞ; ð3Þ

where the un are the observable dependent measurement
functions and the ki are soft gluon momenta. We suppress
the dependence on the hard partons and integration over
their phase space. Although we assume energy ordering,
this is not essential and the algorithm can readily be adapted
to account for a different ordering variable. We should take
the limit μ → 0 in Eq. (3), though it is also correct to put
μ ¼ Q0 if the observable is fully inclusive over gluon
emissions with E < Q0.
This iterative form of the algorithm is well suited to a

Monte Carlo implementation. The kinematic part of the
evolution is diagonal and does not pose any new problems.
The main challenge is to account for the independent color
evolution in the amplitude and the conjugate amplitude. To
do this we use the color-flow basis in which quarks and
antiquarks are represented by color and anticolor lines (an
incoming quark is represented by an anticolor line), while
gluons are represented by a pair of color and anticolor lines.
A basis vector in the color space is then represented by
stating how the color and anticolor lines are connected.
Amplitudes are decomposed as

jMi ¼
X

σ

Mσjσi; ð4Þ

where σ denotes a permutation, which identifies a basis
vector [8,14]. A general state consisting of n color lines has
a basis of dimension n! corresponding to all possible
permutations of the numbers ð1; 2;…; nÞ. We normalize
the basis vectors so that

hαjβi ¼ Nn−#ðα;βÞ
c ; ð5Þ

where #ðα; βÞ is the minimum number of pairwise swaps by
which the permutations α and β differ. This basis is
overcomplete and not orthogonal but is very simple to
implement and provides excellent opportunities for impor-
tance sampling. We introduce a dual basis jα$ such that
hαjβ$ ¼ ½αjβi ¼ δαβ, where δαβ is unity if the two permu-
tations are equal and zero otherwise. Also,

P
α jαi½αj ¼ 1.

The trace in Eq. (1) is then computed using

TrAn ¼
X

σ;τ

½τjAnjσ$hσjτi: ð6Þ

Figure 1 illustrates how we sample over intermediate color
states by inserting the unit operator between successive real
emission and virtual correction operators. We select initial
color flows σ and σ̄ and compute the corresponding hard-
scattering matrix ½σjHjσ̄$. As long as the evolution has not
terminated, Eq. (2) can be rewritten explicitly in terms of
matrix elements such that one step in the evolution is
determined by

Mρρ̄ðEÞ ¼ −
αs
π
dE
E

dΩ
4π

X

τ;σ
τ̄;σ̄

½ρjDEjτi½τjVE;E0 jσi

×Mσσ̄ðE0Þhσ̄jV†
E;E0 jτ̄$hτ̄jD†

Ejρ̄$; ð7Þ

where E is the energy of the latest emission and E0 is the
previous energy. This expression is the core of our
implementation and starting from color flows ðσ; σ̄Þ, our
Monte Carlo algorithm selects the color flows ðτ; τ̄Þ after
the virtual evolution, the emission scale and momentum,
and color flows ðρ; ρ̄Þ after the emission. If the evolution
terminates, the final product of matrix elements must be
further multiplied by the scalar product matrix hσmjσ̄mi,
where m labels the final color flows. This induces a 1=Nc
suppression factor for every swap by which the final color
flows differ.
Calculating the real emission matrix elements and virtual

corrections involves computing matrix elements ½τjTijσi
and ½τjTi · Tjjσi. Explicit expressions for these are pre-
sented in Ref. [8]. For the real emissions, the calculations
are simplified since the real emission operator can either
(a) add a new color line without changing any of the
existing color connections or (b) add a new color line and
then make a single swap. In the case that the gluon is
emitted off a color line, this swap connects the color of the
emitted gluon to the anticolor partner of the emitter (and
likewise if the gluon is emitted off an anticolor line). Taken

FIG. 1. One contribution to the A1 operator, starting from the
hard scattering with two color lines. It corresponds to single-
gluon emission with two virtual gluon exchanges. The vertical
dotted lines are to help identify the intermediate color states. The
algorithm works iteratively outwards, starting from the hard
process in the middle and multiplying matrix elements as it goes.

PHYSICAL REVIEW LETTERS 126, 112001 (2021)

112001-2



Resummation of subleading soft logarithms in jet processes 
using MC method: Gnole Banfi, Dreyer, Monni ’21 SCET 
framework TB, Schalch, Xu, ’23 … 

… and same result from PanScales MC  Ferrario Ravasio, 
Hamilton, Karlberg, Salam, Scyboz, Soyez ’23. 

Numerical agreement among the three approaches.

Resummation of Next-to-Leading Non-Global Logarithms at the LHC

Thomas Bechera,⇤ Nicolas Schalcha,† and Xiaofeng Xub‡
a
Institut für Theoretische Physik & AEC, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

b
PRISMA

+
Cluster of Excellence, Johannes Gutenberg University, 55099 Mainz, Germany

In cross sections with angular cuts, an intricate pattern of enhanced higher-order corrections
known as non-global logarithms arises. The leading logarithmic terms were computed numerically
two decades ago, but the resummation of subleading non-global logarithms remained a challenge
that we solve in this Letter using renormalization group methods in effective field theory. To achieve
next-to-leading logarithmic accuracy, we implement the two-loop anomalous dimension governing
the resummation of non-global logarithms into a large-Nc parton shower framework, together with
one-loop matching corrections. As a first application, we study the interjet energy flow in e+e�

annihilation into two jets. We then present, for the first time, resummed predictions at next-to-
leading logarithmic accuracy for a gap-between-jets observable at hadron colliders.

Introduction. — There has been impressive progress
in the perturbative calculation of processes at the
Large Hadron Collider (LHC). However, for observables
involving disparate scales, computations beyond fixed
perturbative order are necessary. These include cross
sections involving a hard scale Q but with sensitivity to
a soft scale Q0. Such cross sections involve large loga-
rithms in the scale ratio L = ln(Q/Q0) that degrade the
perturbative expansion and should be resummed to all
orders to obtain reliable predictions. For jet and other
observables involving angular constraints on the radi-
ation, a complicated pattern of enhanced higher-order
corrections known as Non-Global Logarithms (NGLs)
arises due to secondary emissions off hard partons [1–
3]. At leading-logarithmic (LL) ⇠ (↵sL)n accuracy, re-
summed results both at large [1–3] and finite Nc [4–7]
are available. Despite continued progress in the under-
standing of non-global observables over the past 20 years
[8–34], a full resummation of next-to-leading logarithmic
(NLL) ⇠ ↵s (↵sL)n corrections remained elusive. In this
letter we solve this problem based on a factorization the-
orem [13, 14] obtained in soft-collinear effective field the-
ory [35–37]. The factorization theorem splits the cross
section into hard and soft functions. To resum the large
logarithms, one solves the renormalization group (RG)
equations of the hard functions to evolve them from a
scale µ ⇠ Q down to µ ⇠ Q0. Since the associated
anomalous dimension is a matrix in the (infinite) space
of particle multiplicities, we resort to Monte Carlo (MC)
methods to solve the RG equations. A key ingredient
for NLL resummation is the recently extracted two-loop
anomalous dimension [38], which we implement into a
parton shower framework, which iteratively generates ad-
ditional emissions to solve the RG equations. Combined
with the one-loop corrections to the hard and soft func-
tions we obtain in this Letter the full set of NLL contri-
butions for gap-between-jets cross sections at lepton and
hadron colliders. For the lepton-collider case NLL results
were first presented in [39], based on very different for-
malism [40], and we find full agreement within numerical
uncertainties.

Q

Q0

↵
�Y

FIG. 1. Representation of the factorization formula (1). The
blue lines depict hard radiation associated with the energy
scale Q, which is constrained inside the jet cones, while the
red lines represent the soft radiation at lower energies Q0.
The soft radiation can cover the entire phase space.

Methodology. — The basis for our resummation are fac-
torization theorems for jet production in the presence of
a veto on radiation in certain angular regions of the phase
space. The simplest case is two-jet production in e+e�

collisions, which factorizes as [13, 14]

�(Q, Q0) =
1X

m=2

⌦
Hm({n}, Q, µ) ⌦ Sm({n}, Q0, µ)

↵
, (1)

where Q is the center-of-mass energy and Q0 is the energy
scale above which we veto radiation in the gap outside
the jet cones. We impose the veto by demanding that
the transverse energy ET of the particles in the gap is
below Q0. At the order we are working, our constraint
is equivalent to imposing that the transverse momentum
of the leading jet in the gap region is below Q0. Fig-
ure 1 shows a pictorial representation of the factoriza-
tion theorem (1). The hard functions Hm describe m
hard partons, which we treat as massless, inside the jet
cones. To obtain Hm, one integrates the squared am-
plitudes over the energies of the m hard partons while
keeping their directions {n} = {n1, . . . , nm} fixed. The
bare hard functions in d = 4 � 2✏ are defined as

Hm =
1

2Q2

mY

i=1

Z
dEi Ed�3

i

c̃✏ (2⇡)2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q �

mX

i=1

Ei

⌘
�(d�1)(~ptot) ⇥in({n}) , (2)
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more in Friday’s lecture



Anatomy of a 
resummed computation
Transverse momentum resummation 

in the Drell-Yan process



I first want to explain terminology such as 

resummation

next-to-next-to-leading-logarithmic accuracy (NNLL)

To do so, I will use a classic example, the qT 
spectrum in the Drell-Yan process  

Will discuss the structure of resummed results and 
the associated theoretical uncertainties.



Drell-Yan Processes

• Production of one or more electroweak bosons (W, Z, γ or 
H), together with arbitrary hadronic final state X. 

• Leptonic decays of the weak bosons, only leptonic 
measurements. 

• Simplest hard process at hadron colliders. Precision 
results from the LHC, even for multi-boson final states.



qT spectrum of Z-bosons

• qT is the transverse momentum of the lepton pair! 

• Experimental uncertainties invisible on this plot!

qT resummation
Phenomenology

Appendix

Introduction
Factorization
Resummation

Observable
Consider:
N1 + N2 ! F (q) + X

F = l
+
l
�, Z , W , H, Z 0, . . .

Test SM to high precision.

d�/dqT in region q
2
T
⌧ M

2.

) Need to resum large
logarithms.

) Transverse PDFs (TPDFs)
(Beam functions).

) F recoils against initial state
radiation

pp→Z+X @ 7TeV

|pT
l |>20GeV,|ηl |<2.4

+Atlas14063660 Born
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A precision measurement at the LHC
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Sub-percent accuracy  
over large range of energies and 

many orders of cross section!

 = qT , the transverse momentum of the lepton pair

Potential for precision determinations of SM parameters 
but huge challenge for theory!



Tiny experimental uncertainties!
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Figure 4: Breakdown of relative uncertainties in the measured normalised differential cross-sections, 1
f

3
2
f

3?)3H
, as

a function of ?T. The values are shown, as obtained from the full fit and for each |H | bin, for the combination of
the 44⇠⇠ and ``⇠⇠ channels for |H | < 1.6, for the combination of all three channels for 1.6 < |H | < 2.4, and for the
44⇠� channel alone for 2.4 < |H | < 3.6.
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Strong coupling constant from qT spectrum

Precise determination of strong coupling constant: 

NLL NNLL LL3N LLa4N
0.108

0.110

0.112

0.114
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0.118
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0.122

) Z
(m s

α

MSHT20 PDF

T
Z p
Scale variations

 Z→pp 
-18 TeV, 20.2 fb

ATLAS Preliminary

Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher order uncertainties estimated through scale variations, the vertical
error bars include experimental and PDF uncertainties.

Table 1: Summary of the uncertainties for the determination of Us (</ ).

Experimental uncertainty +0.00044 -0.00044
PDF uncertainty +0.00051 -0.00051

Scale variations uncertainties +0.00042 -0.00042
Matching to fixed order 0 -0.00008
Non-perturbative model +0.00012 -0.00020

Flavour model +0.00021 -0.00029
QED ISR +0.00014 -0.00014

N4LL approximation +0.00004 -0.00004

Total +0.00084 -0.00088

quoted uncertainty. The inclusion of NLO electroweak corrections yields a shift on Us(</ ) of +0.00006,
uncertainties related to missing electroweak higher orders are considered negligible.

Uncertainties related to the numerical approximation or the incomplete knowledge of some of the coefficients
required for N4LL accuracy of ?T-resummation are estimated to contribute at the level of ±0.00004, with
the largest contribution coming from the numerical approximation of the cusp anomalous dimension at
five loops [39], and from the incomplete knowledge of the hard-collinear contributions at four loops [42].
Uncertainties due to the numerical approximation of the four loop splitting functions are already included
in the MSHT20 PDF uncertainties.

A summary of the uncertainties in the determination of Us(</ ) is shown in Table 1.

The goodness of fit is assessed by computing the value of the j
2 function with the theory predictions

8

higher precision of resummation

2309.12986 

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Nature Phys. CERN-EP-2023-200
25th September 2023

A precise determination of the strong-coupling

constant from the recoil of ` bosons with the ATLAS

experiment at
p
s = 8 TeV

The ATLAS Collaboration

The coupling constant of the strong force is determined from the transverse-momentum
distribution of / bosons produced in 8 TeV proton–proton collisions at the LHC and recorded
by the ATLAS experiment. The /-boson cross sections are measured in the full phase space
of the decay leptons using 15.3 million electron and muon pairs, in a dataset collected in
2012 and corresponding to an integrated luminosity of 20.2 fb�1. The analysis is based on
predictions evaluated at third order in perturbative QCD, supplemented by the resummation
of logarithmically enhanced contributions in the low transverse-momentum region of the
lepton pairs. The determined value of the strong coupling at the reference scale corresponding
to the /-boson mass is Us(</ ) = 0.1183 ± 0.0009. This is the most precise experimental
determination of Us(</ ) achieved so far.

© 2023 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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mW from W-production

• Neutrino transverse momentum indirectly through 

• mW  from template fits to pTℓ, pTν, and mT. 

CDF et al., Science 376, 170–176 (2022) 
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are combined to obtain Dp=p ¼ "1393 T 26ð Þ
parts per million (ppm).
The combinedmomentum calibration is used

to measure the Z boson mass in the dimuon
channel (Fig. 3A), which is blinded with a
random offset in the range of −50 to 50 MeV
until all analysis procedures are established. The
unblinded measurement is MZ ¼ 91;192:0 T
6:4stat T 4:0syst MeV (stat, statistical uncertainty;
syst, systematic uncertainty), which is consistent
with the world average of 91;187:6 T 2:1 MeV
(10, 44) and therefore provides a precise con-
sistency check. Systematic uncertainties on MZ

result from uncertainties on the longitudinal
coordinatemeasurements in the COT (1.0MeV),
the momentum calibration (2.3 MeV), and the

QED radiative corrections (3.1MeV). The latter
two sources are correlated with the MW mea-
surement. The Z → mm mass measurement is
then included in the final momentum calibra-
tion. The systematic uncertainties stemming
from the magnetic field nonuniformity dom-
inate the total uncertainty of 25 ppm in the
combined momentum calibration.
After track momentum (p) calibration, the

electron’s calorimeter energy (E) is calibrated
using the peak of the E/p distribution in
W → en (Fig. 2B) and Z → ee [fig. S13 in (63)]
data. Fits to this peak in bins of electron ET

determine the electron energy calibration and
its dependence on ET. The radiative region of
the E/p distribution (E/p > 1.12) is fitted to

measure a small correction (≈5%) to the
amount of radiative material traversed in
the tracking volume. The EM calorimeter
resolution is measured using the widths of
the E/p peak in the W → en sample and of
the mass peak of the Z → ee sample.
We use the calibrated electron energies to

measure the Z boson mass in the dielectron
channel (Fig. 3B), which is also blinded with
the same offset as used for the dimuon chan-
nel. The unblinded result, MZ ¼ 91;194:3 T
13:8stat T 7:6syst MeV , is consistent with the
world average, providing a stringent consist-
ency check of the electron energy calibration.
Systematic uncertainties on MZ are caused
by uncertainties on the calorimeter energy
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Fig. 4. Decay of the W boson. (A to C) Distributions for mT (A), p‘T (B), and p
n
T (C) for the muon channel. (D to F) Same as in (A) to (C) but for the electron channel.

The data (points) and the best-fit simulation template (histogram) including backgrounds (shaded regions) are shown. The arrows indicate the fitting range.
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LO:  pTℓ < MW/2
2.2. TWO-PARTICLE SCATTERING 11

#»p ⇥ #»p

#»p ⇤

⇥ #»p ⇤

E⌅

4

1 2

3

Figure 2.3: Two-particle scattering in center of mass frame. For the constraints on the
scattering angle E⌅ see section 2.2.1.

The sum

p1 + p2 = (E⌅
1 + E⌅

2� �✏ ⇣
⇧
s

,
#»
0 )

is no Lorentz invariant, whereas

s = (p1 + p2)
2 = (E⌅

1 + E⌅
2)

2

is one. Now we can express E⌅
i , | #»p |, and | #»p ⇤| in terms of s (see exercise sheet 1):

E⌅
1,3 =

1

2
 
s
(s+m2

1,3 ⇥m2
2,4) (2.9)

#»p 2 = (E⌅
1)

2 ⇥m2
1 =

1

4s
◆(s,m2

1,m
2
2), (2.10)

where we have used the Källen function (triangle function) which is defined by

◆(a, b, c) = a2 + b2 + c2 ⇥ 2ab⇥ 2ac⇥ 2bc

=
◆
a⇥ (

 
b+
 
c)2

◆
a⇥ (

 
b⇥
 
c)2



= a2 ⇥ 2a(b+ c) + (b⇥ c)2.

We can see that the Källen function has the following properties:

• symmetric under a⌦ b⌦ c and

• asymptotic behavior: a↵ b, c : ◆(a, b, c, )� a2.
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7 σ difference of CDF value to the world average!

(6.5 MeV) and track momentum (2.3 MeV),
on the z coordinate measured in the COT
(0.8 MeV), and on QED radiative corrections
(3.1 MeV). Measurements of the Z boson
mass using the dielectron track momenta,
and comparisons of mass measurements using
radiative and nonradiative electrons, provide
consistent results. The final calibration of the
electron energy is obtained by combining the
E/p-based calibration with the Z → eeð Þmass-
based calibration, taking into account the cor-
related uncertainty on the radiative corrections.
The spectator partons in the proton and

antiproton, as well as the additional (≈3) p!p
interactions in the same collider bunch cross-
ing, contribute visible energy that degrades
the resolution of u

→
. These contributions are

measured from events triggered on inelastic
p!p interactions and random bunch cross-
ings, reproducing the collision environment
of theW and Z boson data. Because there are
no high-pT neutrinos in the Z boson data, the
p
→
T imbalance between thep

→‘‘

T andu
→
inZ → ‘‘

events is used to measure the calorimeter
response to, and resolution of, the initial-
state QCD radiation accompanying boson
production. The simulation of the recoil vector
u
→
also requires knowledge of the distribution of

the energy flow into the calorimeter towers
impacted by the leptons, because these towers
are excluded from the computation of u

→
. This

energy flow ismeasured from theW boson data
using the event-averaged response of towers
separated in azimuth from the lepton direction.

Extracting the W boson mass

Kinematic distributions of background events
passing the event selection are included in
the template fits with their estimated nor-
malizations. The W boson samples contain a
small contamination of background events
arising from QCD jet production with a hadron
misidentified as a lepton, Z → ‘‘ decays with
only one reconstructed lepton,W → tn→ ‘n!nn,
pion and kaon decays in flight to muons (DIF),

and cosmic-ray muons (t, tau lepton; !n, anti-
neutrino). The jet, DIF, and cosmic-ray back-
grounds are estimated from control samples
of data, whereas the Z → ‘‘ and W → tn
backgrounds are estimated from simulation.
Background fractions for the muon (electron)
datasets are evaluated to be 7.37% (0.14%)
from Z → ‘‘ decays, 0.88% (0.94%) from
W → tn decays, 0.01% (0.34%) from jets,
0.20% from DIF, and 0.01% from cosmic rays.
The fit results (Fig. 4) are summarized in

Table 1. The MW fit values are blinded during
analysis with an unknown additive offset in the
range of−50 to 50MeV, in the samemanner as,
but independent of, the value used for blinding
the Z bosonmass fits. As the fits to the different
kinematic variables have different sensitivities
to systematic uncertainties, their consistency
confirms that the sources of systematic uncer-
tainties are well understood. Systematic uncer-
tainties, propagated by varying the simulation
parameters within their uncertainties and re-
peating the fits to these simulated data, are
shown in Table 1. The correlated uncertainty in
the mT (p‘T , pnT ) fit between the muon and

electron channels is 5.8 (7.9, 7.4)MeV. Themass
fits are stable with respect to variations of the
fitting ranges.
Simulated experiments are used to evaluate

the statistical correlations between fits, which
are found to be 69% (68%) between mT and
p‘T (p

n
T) fit results and 28% between p‘

T and pnT
fit results (43). The six individual MW results
are combined (including correlations) by
means of the best linear unbiased estimator
(66) to obtain MW ¼ 80;433:5 T 9:4MeV ,
with c2/dof = 7.4/5 corresponding to a prob-
ability of 20%. The mT, p‘

T, and pn
T fits in the

electron (muon) channel contribute weights
of 30.0% (34.2%), 6.7% (18.7%), and 0.9%
(9.5%), respectively. The combined result is
shown in Fig. 1, and its associated systematic
uncertainties are shown in Table 2.

Discussion

The dataset used in this analysis is about four
times as large as the one used in the previous
analysis (41, 43). Although the resolution of the
hadronic recoil is somewhat degraded in the
new data because of the higher instantaneous
luminosity, the statistical precision of themea-
surement fromthe larger sample is still improved
by almost a factor of 2. To achieve a commen-
surate reduction in systematic uncertainties, a
number of analysis improvements have been
incorporated, as described in table S1. These im-
provements are based on using cosmic-ray and
collider data inwaysnot employedpreviously to
improve (i) the COT alignment and drift model
and the uniformity of the EM calorimeter re-
sponse, and (ii) the accuracy and robustness of
the detector response and resolution model in
the simulation. Additionally, theoretical inputs
to the analysis have been updated. Upon incor-
porating the improved understanding of PDFs
and track reconstruction, our previousmeasure-
ment is increased by 13.5MeV to 80,400.5MeV;
the consistency of the latter with the new mea-
surement is at the percent probability level.
In conclusion, we report a new measure-

ment of theW bosonmass with the complete
dataset collected by the CDF II detector at the
Fermilab Tevatron, corresponding to 8.8 fb−1

of integrated luminosity. This measurement,
MW ¼ 80;433:5 T 9:4MeV, is more precise
than all previous measurements ofMW com-
bined and subsumes all previous CDF mea-
surements from 1.96-TeV data (38, 39, 41, 43).
A comparison with the SM expectation of
MW ¼ 80;357 T 6MeV (10), treating the quoted
uncertainties as independent, yields a differ-
ence with a significance of 7.0s and suggests
the possibility of improvements to the SM
calculation or of extensions to the SM. This
comparison, along with past measurements, is
shown in Fig. 5. Using the method described
in (45), we obtain a combined Tevatron (CDF
and D0) result of MW ¼ 80;427:4 T 8:9MeV.
Assuming no correlation between the Tevatron
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Fig. 5. Comparison of this CDF
II measurement and past MW

measurements with the SM
expectation. The latter includes
the published estimates of the
uncertainty (4 MeV) due to
missing higher-order quantum
corrections, as well as the
uncertainty (4 MeV) from other
global measurements used as
input to the calculation, such as
mt. c, speed of light in a vacuum.

)2W boson mass (MeV/c
79900 80000 80100 80200 80300 80400 80500
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D0 II   23±80376  
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L3   55±80270  
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DELPHI   67±80336  
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CDF I   79±80432  
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D0 I   83±80478  
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Table 2. Uncertainties on the combined
MW result.

Source Uncertainty (MeV)

Lepton energy scale 3.0
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton energy resolution 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy scale 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Recoil energy resolution 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton efficiency 0.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Lepton removal 1.2
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Backgrounds 3.3
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pZT model 1.8
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

pWT =p
Z
T model 1.3

. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Parton distributions 3.9
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

QED radiation 2.7
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

W boson statistics 6.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .

Total 9.4
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .
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The mass of the W boson, a mediator of the weak force between elementary particles, is tightly constrained
by the symmetries of the standard model of particle physics. The Higgs boson was the last missing
component of themodel. After observation of the Higgs boson, a measurement of theW bosonmass provides a
stringent test of the model. We measure the W boson mass, MW, using data corresponding to 8.8 inverse
femtobarns of integrated luminosity collected in proton-antiproton collisions at a 1.96 tera–electron
volt center-of-mass energy with the CDF II detector at the Fermilab Tevatron collider. A sample of approximately
4 million W boson candidates is used to obtain MW ¼ 80;433:5 T 6:4stat T 6:9syst ¼ 80;433:5 T 9:4MeV=c2,
the precision of which exceeds that of all previous measurements combined (stat, statistical uncertainty;
syst, systematic uncertainty; MeV, mega–electron volts; c, speed of light in a vacuum). This measurement
is in significant tension with the standard model expectation.

T
he observation of the Higgs boson (1–4)
at the LargeHadron Collider (LHC) (5, 6)
has validated the last missing piece of the
standard model (SM) (7–9) of elementary
particle physics. This model, which incor-

porates quantum mechanics, special relativity,
gauge symmetry, and group theory, currently
describes most particle physics measurements
with high accuracy. It postulates a number of

experimentally established symmetries among
particle properties, which tightly constrain the
parameters of the model from experimental
data (10). Given the current experimental preci-
sion and the predictive power of the SM, global
fits of themodel to the data render precise esti-
mates of fundamental parameters, such as the
mass of theW boson. As one of the mediators
of the weak nuclear force, this particle is a key

component of the SM framework. Itsmass, one
of the most important parameters in particle
physics, is presently constrained by SM global
fits to a relative precision of 0.01%, providing a
strongmotivation to test the SM bymeasuring
theWbosonmass to the same level of precision.
All fundamental particle masses, including

that of the W boson, are generated in the SM
through interactions with the condensate of
the Higgs field in the vacuum. The formation
of the condensate and the quantum excitation
of this field, the Higgs boson (2–4), are param-
etrized but not explained by the SM. A number
of hypotheses have been promulgated to pro-
vide a deeper explanation of theHiggs field, its
potential, and the Higgs boson. These include
supersymmetry—a spacetime symmetry relat-
ing fermions and bosons [(11) and references
therein]—and compositeness, in which addi-
tional strong confining interactions produce
the Higgs boson as a bound state [(12) and
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Important to have precise theoretical control over the 
transverse momentum spectra. 

Let’s compute them!

NLL NNLL LL3N LLa4N
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α
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Z p
Scale variations

 Z→pp 
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ATLAS Preliminary

Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher order uncertainties estimated through scale variations, the vertical
error bars include experimental and PDF uncertainties.

Table 1: Summary of the uncertainties for the determination of Us (</ ).

Experimental uncertainty +0.00044 -0.00044
PDF uncertainty +0.00051 -0.00051

Scale variations uncertainties +0.00042 -0.00042
Matching to fixed order 0 -0.00008
Non-perturbative model +0.00012 -0.00020

Flavour model +0.00021 -0.00029
QED ISR +0.00014 -0.00014

N4LL approximation +0.00004 -0.00004

Total +0.00084 -0.00088

quoted uncertainty. The inclusion of NLO electroweak corrections yields a shift on Us(</ ) of +0.00006,
uncertainties related to missing electroweak higher orders are considered negligible.

Uncertainties related to the numerical approximation or the incomplete knowledge of some of the coefficients
required for N4LL accuracy of ?T-resummation are estimated to contribute at the level of ±0.00004, with
the largest contribution coming from the numerical approximation of the cusp anomalous dimension at
five loops [39], and from the incomplete knowledge of the hard-collinear contributions at four loops [42].
Uncertainties due to the numerical approximation of the four loop splitting functions are already included
in the MSHT20 PDF uncertainties.

A summary of the uncertainties in the determination of Us(</ ) is shown in Table 1.

The goodness of fit is assessed by computing the value of the j
2 function with the theory predictions

8
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9.2 Perturbative QCD corrections

In this section we calculate the O(as) corrections to the parton model
Drell-Yan cross section. The calculation is similar in many respects to that
for the corresponding correction to the deep inelastic structure function
F2, described in Chapter 4. We begin by considering the parton-level
Drell-Yan cross section for the leading-order process q(pr)*4@z) -+ /+l-:

^rs 
dä _ 4na2M" dMz = g^, rF(r) ' (9.17)

where, from Eq. (9.5),

i1r1 - ei6(r - r) (e.18)

for a single flavour of quark with charge Qo. ln general, .F will have a
perturbative expansion in powers of the strong coupling:

r1r1 :ro(r)*#r'tl+.... (e.le)

The diagrams which contribute at O(as) are shown in Fig. 9.3. There
are evidently three classes of contributions: (a) virtual gluon corrections
to the leading-order contribution (frqflv), (b) real gluon corrections from
q(p) + 4@) -+ -y. + g(k) (ff'^), and (c) the quark-gluon scattering
process q(p) + g(pr) -+ | * q(k) (f,qs) together with the correspond-
ing qg contribution. The calculation of each of these proceeds just as for
the O(as) corrections to F2. Diagram by diagram, three types of diver-
gence are encountered: ä(qQ -+ /+/-)ultraviolet divergences from the loop

from: QCD and Collider Physics, Ellis, Sterling, Webber
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• Lowest order  process has no hadronic state X, 
therefore qT  = 0: 

• Note: cross section is a distribution in qT. 

• PDF convolution drops out in spectrum. 

qq̄ → Z
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• At the next order Z-boson recoils against the gluon (b) or 
quark (c):  

• At low qT  the cross section is enhanced: 

• Distribution: integral over qT is defined and gives 1. 
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One can use dimensional regularization  for phase 
space (as well as loop integrals). Gives expressions such as 

or differentially 

Soft and collinear  divergences cancel in cross section 
(real against virtual!) up to collinear terms which are absorbed 
into the PDFs, but logarithms remain.

d = 4 − 2ϵ

1/ϵ

∫
QT

0
dqT q−1−2ϵ

T = −
1
2ϵ

Q−2ϵ
T = −

1
2ϵ

+ ln(QT) − ϵ ln2(QT) + …

q−1−2ϵ
T = −

1
2ϵ

δ(qT) + ( 1
qT )

*
+ …



Full partonic cross section in  

 : gluon scattering angle in partonic CMS 

 : energy variable.  

Soft limit is  

d = 4 − 2ϵ

θ

z = M2/ ̂s

z → 1

d ̂σq̄q→Z+g

dz d cos θ
= σ0

CF αs

4π
eγϵ

Γ(1 − ϵ)
21+2ϵ(1 − z)−1−2ϵzϵ (1 − cos2 θ)−1−ϵ

× [4 + (1 − z)((1 − z)(cos2 θ + 1 − 2ϵ) − 4)]

soft divergence collinear divergence

d ̂σ
dz d cos θ

→ σ0
CF αs

4π
eγϵ

Γ(1 − ϵ)
23+2ϵ(1 − z)−1−2ϵ(1 − cos2 θ)−1−ϵ



The double logarithmic term  is linked to a 
double divergence, where the emitted gluon is both 
soft and collinear 

• squared amplitude is very simple in this region, 
also at higher orders, see later! 

The divergence itself cancels against the virtual part 

• can predict double logs purely from the 
divergences of loop diagrams.

αs ln2(QT)
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Leading logarithmic (LL) result
The plots in the previous slides were obtained by 
defining 

and using the approximation 

with
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Full fixed-order result

• Qualitatively similar to the simple double-log approximation 
• Bands from varying scale in strong coupling by factor 2 

around default. Large scale uncertainty for low qT 
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The integrated cross section 

  
has for low qT an expansion of the form ( )         L = ln

M2
Z

q2
T

leading logarithms 
next-to-leading logarithms

Sudakov logarithms
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Counting logarithms
Enhanced higher-order corrections at small qT  
because the logarithm L becomes large and 
overwhelms the αs suppression. Natural counting is  

This is compatible with the running of the coupling: 

L ∼
1
αs

β0

4π
L =

1
αs(MZ)

−
1

αs(qT)
+ O(α0

s )



Counting implies that  

Counting in the cross section is not meaningful! 
Higher log terms become more and more important.

Need full control over these enhanced terms to get 
meaningful results.  

Solution: can show that (for many observables) the 
double-log terms exponentiate.

αsL2 ∼
1
αs

, α2
s L4 ∼

1
α2

s
, α3

s L6 ∼
1
α3

s
, …



One can show that cross section has the form 

Nontrivial, crucial feature: only one L per order in the 
exponent! 

Accuracy: 

• LL: g1;  NLL: g1, g2;  NNLL: g1, g2, g3  

Expand in αs but count αs L as O(1)
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Size of corrections

Correction to L ~ 1 L ~ 1/αs

LO αs αsnL2n !
NLO αs2 αsnL2n !
LL αsnLn ~ 1

NLL αs
NNLL αs2

where r = αs(µ)/αs(ν). The explicit expressions for the functions f1 to f4 needed for our
calculation are given in [24]. The leading-order term α0

s in renormalization group improved
perturbation theory involves the functions f1 and f2, which depend on the one and two-loop
cusp anomalous dimension. To make contact with the literature, we can expand αs(µ) around
fixed coupling αs ≡ αs(ν). The result takes the form

S(ν, µ) = L g1(αsL) + g2(αsL) + αsg3(αsL) + α2
sg4(αsL) + . . . , (29)

with L = ln(µ/ν). LL resummations include only g1, NLL also g2 and so forth. When
rewriting (28) in the form (29), the expansion of fi contributes to the functions gj with
j ≥ i so that there is a one-to-one correspondence between the order in renormalization
group improved perturbation theory and the standard logarithmic accuracy. Note that the
higher order terms to (28) and (29) are suppressed by explicit factors of αs. The missing
pieces in the integral R2(τ) at N3LL are suppressed by α3

s so that the missing logarithms are
α3 × αn ln2n τ ≡ αk ln2k−6 τ for the default scale choice. In particular, at order α3 the N3LL
result includes everything except for the constant term in R2(τ) which does not contribute to
the thrust distribution.

In Table 1, we list the ingredients to obtain (26) to a given accuracy. The necessary anoma-
lous dimensions and the results for the functions H , j̃ and s̃T are provided in Appendix A.
Everything in the table except for the four-loop cusp anomalous dimension and the constant
part of the two-loop soft function are known. We estimate the former using the Padé approxi-
mation Γ4 = Γ2

3/Γ2 [36] and determine the latter numerically in the next section. Rather than
specifying both the accuracy of the resummation and the order to which we match to the fixed
order result, will will in the following simply refer to the definitions of 1st, 2nd, 3rdand 4thorder
as given in Table 1. Note that the difference between 3rdand 4thorder, as we have defined
them, is only the inclusion of NNLO matching corrections, but the logarithmic accuracy stays
the same.

3 Resummation vs. fixed order

In this section, we compare the resummed expression, valid in the endpoint region τ → 0 to
the fixed-order expression, which is valid away from the endpoint. The resummed expression,
when expanded to fixed order, must reproduce the τ = 0 singularities of the fixed-order
calculation. This observation can be used to extract numerically the constant part of the
two-loop soft function. Then, by including the difference between the expanded resummed
expression and the fixed-order expression, we derive the final matched distribution.

The fixed-order thrust distribution has been calculated to leading order analytically and
to NLO and NNLO numerically. For the scale choice µ = Q, the result is usually written in
the form

1

σ0

dσ

dτ
= δ(τ) +

(αs

2π

)
A(τ) +

(αs

2π

)2
B(τ) +

(αs

2π

)2
C(τ) + · · · , (30)

where we have suppressed the argument of the coupling constant, αs ≡ αs(Q). Throughout
the following analysis, we use an analytical form for A(τ), a numerical calculation of B(τ)
using the program event2 [37] with 1010 events and a numerical calculation of C(τ) that was
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Uncertainty estimate
Let us discuss how the estimate uncertainties in resummed results, 
using our LL result 

  

LL is not unique:  

1. Can choose a value of μ in the coupling. 

2. Can modify  with   the ``resummation 

scale’’. Vary this scale e.g. by a factor of two

L → L̃ = ln
q2

T

Q2
Q ∼ MZ
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dqT
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Scale in coupling
In our exponentiation we have neglected running 
coupling effects, but these make a big difference and 
need to be included. 
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Including running effects
Proper expression for the double logarithmic part which takes into 
account the running coupling is 

One can rewrite the entire integral as an integral over the running 
coupling. Remember that 

This is done in Soft-Collinear Effective Theory (SCET). To estimate 
uncertainties one then varies the scale in the high and low coupling.

L g1(αsL) = − ∫
MZ

qT

dμ
μ

4CF αs(μ)
π

ln
M2

Z

μ2

β0

4π
L =

1
αs(MZ)

−
1

αs(qT)
+ O(α0

s )



Uncertainty estimate in traditional resummation

Significant uncertainty: expected since 
missing NLL is an O(1) effect.

MZ /2 < Q < 2MZ

0 5 10 15 20 25 30

0.00

0.05

0.10

0.15

qT

1

σ

dσ

dqT

MZ /2 < μ < 2MZ

0 5 10 15 20 25 30

0.00

0.05

0.10

0.15

qT

1

σ

dσ

dqT

resummation scale renormalization scale



Uncertainty estimate à la SCET

SCET is based on RG: logs are eliminated in factor of 
coupling constants at high and low scale. 

• Similarly large (but not identical) to trad. approach

qT /2 < μl < 2qT MZ /2 < μh < 2MZ
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Switching off resummation
The resummed result is based on an expansion of the 
cross section for . At high transverse momentum 
(hard emissions!) these results become unphysical! 

Should switch off resummation at larger  and transition to 
standard fixed-order result.    

qT → 0

qT
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Different ways to switch resummation off and match to fixed 
order 

• Traditional approach: modify argument of logarithms L 
so that they switch themselves off at higher qT. 

• SCET: profile functions which modify scales so that 
 for high qT . 

• Transition function , with  which smoothly 
transitions from resummed to fixed-order result, 

 for . 

All these methods are currently used.

μl(qT) → μh

t(x) x = q2
T /M2

Z

t(x) → 0 x → 1



Matching
Resummation is based on expansion at small qT, but 
we can add back the power suppressed terms 

Can combine matching and transition function t(x)

2 RESUMMATION FRAMEWORK AND IMPLEMENTATION

Matching to fixed order A simple additive matching prescription

d�N
3
LL

dqT

�����
naively matched to NNLO

=
d�N

3
LL

dqT
+

d�NNLO

dqT
� d�N

3
LL

dqT

�����
exp. to NNLO| {z }

matching correction ��

(7)

combines the resummed result at small qT with the fixed-order predictions at larger qT ,
but suffers from two problems. First of all, the fixed-order result is only recovered up to
higher-order terms. While formally not a problem, the leftover higher-order terms can induce
unphysical behavior. We should therefore switch off the resummation at large qT , which we
implement using a transition function t(x) with x = q2

T
/Q2. This function is constructed so

that t(x) = 1 +O(x) near x = 0 and t(x � 1) = 0. The intermediate behavior is such that it
smoothly switches the resummation off as x ! 1. A similar problem arises for small qT . The
matching corrections are power suppressed, but can become numerically unstable and suffer
from large unresummed logarithms. For this reason, we switch the matching off at very small
qT , below a cutoff scale q0 . 1GeV. The following modified matching prescription

d�N
3
LL

dqT

�����
matched to NNLO

= t(x)

 
d�N

3
LL

dqT
+ ��|

qT>q0

!
+ (1� t(x))

d�NNLO

dqT
(8)

addresses both issues discussed above. Since we match on the level of the differential cross
section, the fully inclusive fixed-order result is only restored within the nominal perturbative
accuracy, and not exactly. For inclusive Z production it was found that the difference between
resumming and matching the spectrum or the cumulant, which would preserve the integrated
fixed-order result, are numerically small [24]. A detailed comparison of the two approaches
can be found in ref. [76].

Choosing an appropriate transition region has to be done in dependence of the process and
the kinematical cuts. This is necessary in order not to include resummation in a region where
it is no longer valid. While it could be considered a drawback to have to manually choose the
transition region, respectively transition function, we believe that it offers clear advantages:
The transition is performed transparently and we can guarantee which parts of the fully
matched resummation are included in which kinematical region. Contributions where the qT
resummation clearly becomes invalid, for example due to kinematical thresholds, can be fully
excluded.

Below, we discuss the matching procedure in detail for the diboson processes �� and Z�
where kinematical thresholds require switching off the resummation relatively early. To choose
the transition region, we first evaluate the size of the matching corrections relative to the
(naively) matched result for each process and set of cuts. These relative corrections should be
small in the resummation region, at worst of order one. Comparing results, we then try to
identify a matching window in which the resummed and fixed-order results agree well enough
that the transition between them can be performed reliably.

Within our setup one can easily implement any desired transition function or even implement
other matching procedures. All our results in this study are obtained with a suitably
parametrized sigmoid function. Following a choice in CuTe, we first define

s(x; l, r, u) =

✓
1 + exp

✓
log

✓
1� u

u

◆
x�m

w

◆◆�1

, m = (r + l)/2 , w = (r � l)/2 .
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All-order factorization

Factorization theorem originates from soft and 
collinear factorization, as we’ll discuss later.

HijB̄i
B̄j

⇠1p1 ⇠2p2

V1

VN

q1

qN

p1 p2

V2

q2

. . .

Figure 1: Structure and kinematics of the factorization theorem for electroweak boson pro-
duction at low transverse momentum. The wavy lines denote the bosons in the final state.
We can also include their leptonic decays in our framework.

the incoming parton, see Figures 1 and 2. We will discuss these functions and the associated
Fourier integral over the transverse separation x? in more detail below. Let us note that for
gluon-induced processes, such as Higgs production, two beam function structures arise. In
this case the factorization formula involves a sum of two products of beam functions rather
than just a product [18,33]. However, the second structure first arises at NNNLL and is thus
not relevant in the present paper.

Secondly, the resummed result also includes the virtual corrections to the Born level pro-
cess. These are part of the hard function Hij, which is given by the loop contribution to the
process, after subtracting its divergences in MS renormalization. We write the expansion of
the hard function in the form

Hij(p̂1, p̂2, q1, ..., qN , µ) = 1 +
↵s(µ)

4⇡
H(1)

ij (p̂1, p̂2, q1, ..., qN , µ) +O(↵2

s) . (6)

The one-loop hard function for quark-induced processes takes the form

H(1)

qq̄ = �2CF ln2
Q

2

µ2
+ 6CF ln

Q
2

µ2
+ h0(p̂1, p̂2, q1, ..., qN) . (7)

The µ dependence is universal since it is driven by the anomalous dimension of the operator
with a single collinear quark field for each beam direction. All nontrivial information about
the process resides in the scale independent piece h0. For Z boson production we have h0 =
CF (�16 + 7⇡2

/3). For more complicated processes, we use MadGraph5_aMC@NLO to
compute the one-loop corrections, as described in detail in [28]. Specifically, running the code
at an arbitrary reference scale µMad, the hard function is related to the finite part C0 of the
virtual contribution obtained from MadGraph5_aMC@NLO as follows:

h0(p̂1, p̂2, q1, ..., qN) = 2C0(p̂1, p̂2, q1, ..., qN , µMad) + CF


⇡
2

3
+ 2 ln2

Q
2

µ
2

Mad

� 6 ln
Q

2

µ
2

Mad

�
. (8)

We observe that (7) su↵ers from large logarithms when µ
2 ⌧ Q

2, while the beam functions
will involve large logarithms for µ2 � q

2

T . To avoid this problem, we solve the RG equation

4

Beam function 
soft + collinear emission

hard function 
Born + virtual corrections

Collins, Soper, Sterman ’84. In SCET: TB Neubert ‘09



Beam functions factorize further into parton 
distribution functions (PDFs) φq , φg , …  and 
perturbatively calculable kernels  . Īq→g

⇠ p

B̄i

�j Īi j

⇠/z pp

Figure 2: Schematic representation of the beam functions that encode the collinear emissions.

of the hard function to evolve it to low values of µ at which the beam function is free of large
logarithms. The result then takes the form

Hqq̄(p̂1, p̂2, q1, ..., qN , µ) = U(Q2
, µh, µ)Hqq̄(p̂1, p̂2, q1, ..., qN , µh) , (9)

and we choose the starting scale of the evolution to be µh ⇠ Q. The analytical expression for
the evolution factor U(Q2

, µh, µ) is given in Appendix A.1.
Let us now discuss the Fourier integral. Despite the fact that it describes low-energy

dynamics, the integral depends on the large scale Q
2 through the collinear anomaly [9]. This

dependence exponentiates in (4) and is driven by the anomaly exponent Fij, that was derived
to two loops in [9] and has now even been determined at O(↵3

s) in [34,35]. The beam functions
Bi are given by a convolution of a perturbative part, describing collinear and soft emissions
at small transverse momentum, with the usual PDFs. The beam functions are illustrated in
Figure 2 and will be discussed in detail below.

In perturbation theory, the functions Bi are polynomials in the logarithm

L? = ln
x
2

Tµ
2

b
2

0

, (10)

and it is useful to follow [29] and factor out their double logarithmic dependence by rewriting

Bi(⇠i, x?, µ) = e
hi(L?,as) B̄i(⇠i, x?, µ) , (11)

where we have introduced the abbreviation as = ↵s(µ)/4⇡. The double-logarithmic exponent
hi(L?, as) is defined as the solution of the RG equation

d

d lnµ
hi(L?, as) = Ci �cusp L? � 2�i(as) (12)

with boundary condition hi(0, as) = 0. For quark-induced processes, we have Ci = CF , while
Ci = CA in the gluon case. The functions B̄i are single logarithmic and it is convenient to
combine the double logarithmic part with the anomaly into a single exponent

e
gi(⌘i,L?,as) =

✓
x
2

TQ
2

b
2

0

◆�Fij(L?,as)

e
hi(L?,as)e

hj(L?,as) . (13)
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• Factorization takes place in transverse position space. Cross 
section is a Fourier integral! 

• Product of beam functions has Q dependence from rapidity 
divergences (collinear anomaly).  

• Setting  including only NLL term in the exponent Fij leads to a 
divergence in the cross section at low qT.  Frixione, Nason, Ridolfi ‘99

μ = qT

57

2 RESUMMATION FRAMEWORK AND IMPLEMENTATION

to terms suppressed by powers of qT , these channels factorize as

d�ij(p1, p2, {q}) =
Z 1

0
d⇠1

Z 1

0
d⇠2 d�

0
ij(⇠1p1, ⇠2p2, {q})Hij(⇠1p1, ⇠2p2, {q}, µ) ·

1

4⇡

Z
d2x? e�iq?x?

✓
x2
T
Q2

b20

◆�Fij(x?,µ)

Bi(⇠1, x?, µ) ·Bj(⇠2, x?, µ) , (1)

where p1 and p2 are the incoming hadron momenta. The cross section d�ij is fully differential
in the electroweak momenta {q}.

The beam functions Bi and Bj encode the soft and collinear emissions at low transverse
momentum (or more precisely large transverse separation x?) and the indices i and j and
the momentum fractions ⇠1 and ⇠2 refer to the partons which enter the hard process after
these emissions. The hard Born-level process has the differential cross section d�0

ij
and the

hard-function as Hij collects the associated virtual corrections. The collinear anomaly leads
to the Q2-dependent factor within the Fourier-integral over the transverse position x?. The
perturbatively calculable anomaly exponent Fij is also referred to as the rapidity anomalous
dimension in the framework of ref. [37]. In case of gluon-gluon initiated processes (i = j = g),
a second product of beam functions is added as required [25, 64]. Lastly, we have defined
b0 = 2e��E , where �E is the Euler-Mascheroni constant, and x2

T
= �x2?.

The hard function and the Born cross section are the only process-dependent ingredients in
formula (1). Since the hard function corresponds to the MS-renormalized loop corrections
to the Born amplitude and the implementations of NNLO corrections in MCFM are based
upon a SCET-derived factorization for jettiness ⌧ [65], the MS-renormalized hard functions
are readily available. Furthermore, the processes associated with ⌧ > 0 correspond to those
with qT > 0 needed for the fixed-order matching, and are already well-tested and numerically
stable in the singular limits.

The hard function involves logarithms of the ratio µ2/Q2, which are minimized with a choice
of µ = µ2

h
⇠ Q2, but inside the beam functions the natural choice is µ ⇠ qT . To avoid large

logarithms of q2
T
/Q2 one chooses µh ⇠ Q in the hard function and then evolves it down to the

resummation scale µ ⇠ qT using the RG. This evolution can be solved analytically to obtain
a hard function evolution factor U(Q2, µh, µ) with cusp anomalous dimension and quark and
gluon anomalous dimensions as essential ingredients, see ref. [66] for details. At N3LL we
make use of the recent calculation of the four-loop cusp anomalous dimension [67–69].

The appearance of the power-like dependence on the hard scale Q2 from a re-factorization
of regularized beam functions has been discussed extensively in refs. [23, 24], where the
associated anomaly exponent Fij was first extracted to two-loop accuracy. For resummation
at N3LL we use the three-loop result of refs. [70, 71].

Improvement at very small qT It is natural to rewrite the anomaly as a function of the
logarithm L? = log(x2

T
µ2/b20) and the quantity

⌘i =
Ci↵s(µ)

⇡
log

Q2

µ2
, (2)

where Ci = CF for quark-antiquark initiated processes and Ci = CA for gluon-gluon initiated
processes. For the choice µ ⇠ qT , as appropriate for the beam functions, we should count
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At low transverse momentum QCD emissions start 
recoiling against each other instead of the Z-boson. 
Relevant scale μ is higher than qT of the boson. 
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Solutions
• Set scale in position space, but introduce cutoff 

prescription (b* prescription) to avoid NP region 
Collins, Soper, Sterman ’84 

• Dedicated analysis of Fourier integral at low qT 
reveals that one needs to systematically include 
some additional terms in exponent F and that 

 at low qT , where  for Z-production   
TB, Neubert ’11 

• Set scale to transverse momentum of softest 
emission instead of qT. Monni, Re, Torielli ’16 

• Distributional scale setting Ebert, Tackmann ‘16

μ → q* q* ≈ 2 GeV



• Proper treatment has a dramatic effect at low qT :  
has non-zero intercept at  

• It would be interesting to measure this intercept!

dσ/dq2
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Figure 2: Comparison of NLL (blue bands) and NNLL (green bands) predictions for the cross
section in the improved expansion scheme. The factorization scale µ is varied by a factor two
about its default value µ = qT + q∗, while the hard matching scale is fixed at µ2

h = −M2
Z . The

thick lines in the left plot are obtained for the default scale choice.

µ2
h = m2

Z µ2
h = −m2

Z

NLL 1.000+0.160
−0.060 1.334+0.201

−0.074

NNLL 1.087+0.010
−0.001 1.131+0.001

−0.014

N3LL 1.119+0.006
−0.001 1.130+0.001

−0.001

Table 1: The hard function |CV (−M2
Z , µ)|2 at µ = MZ for space-like and time-like choices of

µ2
h. The uncertainties are obtained by varying µh by a factor two about the default value.

arises when the hard function |CV (−M2
Z , µ)|2 is evolved from a high scale µh ∼ MZ to the

scale µ. The solution of the corresponding RG equation is well known and is reproduced in
Appendix B. If µc < µ < µb, the hard function has to be evolved across a flavor threshold. In
this case, we first evolve from µh down to the threshold µb, switch to four flavors, and then
evolve from µb to µ. While the all-order solution is independent of the matching scale µh, a
residual scale dependence remains at finite orders. To estimate the associated uncertainty, we
should vary the matching scale µh in the hard function. However, since the hard function is an
overall factor multiplying the cross section, we can discuss the µh dependence independently
from the rest. To separate off the qT dependence arising from the choice of µ, we set µ = MZ

for the discussion of the µh dependence. The perturbative expansion of the hard function and
its µh dependence are displayed in Table 1, which shows two different choices for the default
matching scale: the space-like choice µ2

h = M2
Z and the time-like choice µ2

h = −M2
Z . Picking

µ2
h = −M2

Z is motivated by the fact that the vector form factor is evaluated at a time-like
momentum transfer. In [16], it was shown that this choice greatly improves the convergence
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• Ingredients known to high accuracy 
• three-loop beam functions Ebert, Mistlberger, Vita ’20; Luo, Yang, Zhu and 

Zhu ‘20 
• three-loop hard functions for Z/W/γ (new: singlet contributions Gehrmann, 

Primo ’21 with top mass Chen, Czakon, Niggetiedt ’21), two-loop for 
diboson processes 

• new: four-loop anomalous dimensions and anomaly exponent Fij  

• Matching is also known to  (MCFM, NNLOJet)α3
s

61

2 RESUMMATION FRAMEWORK AND IMPLEMENTATION

to terms suppressed by powers of qT , these channels factorize as

d�ij(p1, p2, {q}) =
Z 1

0
d⇠1

Z 1

0
d⇠2 d�

0
ij(⇠1p1, ⇠2p2, {q})Hij(⇠1p1, ⇠2p2, {q}, µ) ·

1

4⇡

Z
d2x? e�iq?x?

✓
x2
T
Q2

b20

◆�Fij(x?,µ)

Bi(⇠1, x?, µ) ·Bj(⇠2, x?, µ) , (1)

where p1 and p2 are the incoming hadron momenta. The cross section d�ij is fully differential
in the electroweak momenta {q}.

The beam functions Bi and Bj encode the soft and collinear emissions at low transverse
momentum (or more precisely large transverse separation x?) and the indices i and j and
the momentum fractions ⇠1 and ⇠2 refer to the partons which enter the hard process after
these emissions. The hard Born-level process has the differential cross section d�0

ij
and the

hard-function as Hij collects the associated virtual corrections. The collinear anomaly leads
to the Q2-dependent factor within the Fourier-integral over the transverse position x?. The
perturbatively calculable anomaly exponent Fij is also referred to as the rapidity anomalous
dimension in the framework of ref. [37]. In case of gluon-gluon initiated processes (i = j = g),
a second product of beam functions is added as required [25, 64]. Lastly, we have defined
b0 = 2e��E , where �E is the Euler-Mascheroni constant, and x2

T
= �x2?.

The hard function and the Born cross section are the only process-dependent ingredients in
formula (1). Since the hard function corresponds to the MS-renormalized loop corrections
to the Born amplitude and the implementations of NNLO corrections in MCFM are based
upon a SCET-derived factorization for jettiness ⌧ [65], the MS-renormalized hard functions
are readily available. Furthermore, the processes associated with ⌧ > 0 correspond to those
with qT > 0 needed for the fixed-order matching, and are already well-tested and numerically
stable in the singular limits.

The hard function involves logarithms of the ratio µ2/Q2, which are minimized with a choice
of µ = µ2

h
⇠ Q2, but inside the beam functions the natural choice is µ ⇠ qT . To avoid large

logarithms of q2
T
/Q2 one chooses µh ⇠ Q in the hard function and then evolves it down to the

resummation scale µ ⇠ qT using the RG. This evolution can be solved analytically to obtain
a hard function evolution factor U(Q2, µh, µ) with cusp anomalous dimension and quark and
gluon anomalous dimensions as essential ingredients, see ref. [66] for details. At N3LL we
make use of the recent calculation of the four-loop cusp anomalous dimension [67–69].

The appearance of the power-like dependence on the hard scale Q2 from a re-factorization
of regularized beam functions has been discussed extensively in refs. [23, 24], where the
associated anomaly exponent Fij was first extracted to two-loop accuracy. For resummation
at N3LL we use the three-loop result of refs. [70, 71].

Improvement at very small qT It is natural to rewrite the anomaly as a function of the
logarithm L? = log(x2

T
µ2/b20) and the quantity

⌘i =
Ci↵s(µ)

⇡
log

Q2

µ2
, (2)

where Ci = CF for quark-antiquark initiated processes and Ci = CA for gluon-gluon initiated
processes. For the choice µ ⇠ qT , as appropriate for the beam functions, we should count
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4-loop anomalous dimensions 
• Anomaly exponent aka rapidity anomalous dimension can be 

extracted from regular 4-loop soft anomalous dimension obtained in 
Das, Moch, Vogt ’19,  Duhr, Mistlberger Vita, ’22 through conformal 
mapping at β(ε*) = 0 Vladimirov ’16. 

• Independent extractions by Duhr, Mistlberger, Vita ’22 and Moult, 
Zhu, Zhu ’22  

• four-loop hard anomalous dimensions Manteuffel, Panzer, and 
Schabinger ’20; and full quark and gluon form factors Lee, 
Manteuffel, Schabinger, Smirnov, Smirnov, and M. Steinhauser ’22. 

• four-loop cusp Henn, Korchemsky, Mistlberger ’19; Manteuffel, 
Panzer, and Schabinger ’20 + … 5-loop cusp is missing, estimated 
to have very small effect.
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Implementation 

• Structure of resummation is the same as born-level + virtual in fixed-order computation 

• Resummation can piggyback on existing fixed-order codes MATRIX+RadISH 
Kallweit, Re, Rottoli, Wiesemann ’20, CuTe-MCFM TB, Neumann ‘20, to get 
resummed fiducial cross sections. 

• Same for jet-veto cross section MadGraph5_aMC@NLO TB, Frederix, Neubert 
Rothen ’14; MCFM-RE Arpino, Banfi, Jäger, Kauer ’19; MCFM 
Campbell, Ellis, Neumann, Seth ’23
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HijB̄i
B̄j

⇠1p1 ⇠2p2

V1

VN

q1

qN

p1 p2

V2

q2

. . .

Figure 1: Structure and kinematics of the factorization theorem for electroweak boson pro-
duction at low transverse momentum. The wavy lines denote the bosons in the final state.
We can also include their leptonic decays in our framework.

the incoming parton, see Figures 1 and 2. We will discuss these functions and the associated
Fourier integral over the transverse separation x? in more detail below. Let us note that for
gluon-induced processes, such as Higgs production, two beam function structures arise. In
this case the factorization formula involves a sum of two products of beam functions rather
than just a product [18,33]. However, the second structure first arises at NNNLL and is thus
not relevant in the present paper.

Secondly, the resummed result also includes the virtual corrections to the Born level pro-
cess. These are part of the hard function Hij, which is given by the loop contribution to the
process, after subtracting its divergences in MS renormalization. We write the expansion of
the hard function in the form

Hij(p̂1, p̂2, q1, ..., qN , µ) = 1 +
↵s(µ)

4⇡
H(1)

ij (p̂1, p̂2, q1, ..., qN , µ) +O(↵2

s) . (6)

The one-loop hard function for quark-induced processes takes the form

H(1)

qq̄ = �2CF ln2
Q

2

µ2
+ 6CF ln

Q
2

µ2
+ h0(p̂1, p̂2, q1, ..., qN) . (7)

The µ dependence is universal since it is driven by the anomalous dimension of the operator
with a single collinear quark field for each beam direction. All nontrivial information about
the process resides in the scale independent piece h0. For Z boson production we have h0 =
CF (�16 + 7⇡2

/3). For more complicated processes, we use MadGraph5_aMC@NLO to
compute the one-loop corrections, as described in detail in [28]. Specifically, running the code
at an arbitrary reference scale µMad, the hard function is related to the finite part C0 of the
virtual contribution obtained from MadGraph5_aMC@NLO as follows:

h0(p̂1, p̂2, q1, ..., qN) = 2C0(p̂1, p̂2, q1, ..., qN , µMad) + CF


⇡
2

3
+ 2 ln2

Q
2

µ
2

Mad

� 6 ln
Q

2

µ
2

Mad

�
. (8)

We observe that (7) su↵ers from large logarithms when µ
2 ⌧ Q

2, while the beam functions
will involve large logarithms for µ2 � q

2

T . To avoid this problem, we solve the RG equation

4
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Figure 16: Comparison between the measured normalised di�erential 3f

3?)
cross-sections, integrated over |H | < 3.6,

with their total uncertainties and the predictions from the various resummation calculations. The top left panel
shows the data, while the next panels show one by one the ratios between each prediction with its uncertainties as
obtained from renormalisation/factorisation/resummation scale variations and the data. The predictions include
approximate N4LL resummation and, except for ARTEMIDE, fixed-order O(U3

B
) contributions from MCFM [47, 52].
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• aN4LL resummations from several groups with different 
formalisms (public N4LL:  CuTe-MCFM Campbell, Neumann ’22, DYTurbo 
Camarda, Cieri, Ferrera ’23; ARTEMIDE Scimemi, Vladimirov ‘23) 

• All results (except ARTEMIDE) include αs3 fixed order 
matching from MCFM 
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Comparison and uncertainties 
As we have seen, resummed computations are performed in a variety of 
(equivalent) formalisms and with different of scheme choices 

• Scale setting in momentum space (CuTe, Radish) versus impact 
parameter space (everyone else) 

• Different formalisms for rapidity logs (CSS, collinear anomaly, RRG) 
and associated uncertainty 

• Different matching schemes / transition to fixed order 

Uncertainty estimates are much less standardized than for fixed-order 
computations!


• Ongoing comparison/benchmark efforts by LHC EW sub-group 

• Workshop at CERN next Monday
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ATLAS αs extraction
• Reconstruct inclusive spectrum 

rate from angular coefficients   

• αs  from fit to DYTurbo  

• MSHT20 approximate N3LO 
PDFs 

• cross checks with NNLO sets 

• Non-perturbative effects based 
on two-parameter ansatz by 
Collins Rogers ‘14
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Figure 2: Transverse-momentum distribution of / bosons predicted with DYTurbo [31] at different values of Us (</ ),
using the MSHT20 PDF set [32].

range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements
with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range
(|[ | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and
hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a
system of precision tracking chambers and fast detectors for triggering. A three-level trigger system is
used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector
information to accept events at a rate of at most 75 kHz. This is followed by two software-based trigger
levels that together reduce the accepted event rate to 400 Hz on average depending on the data-taking
conditions during 2012. An extensive software suite [44] is used in data simulation, in the reconstruction
and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment. The data were collected by the ATLAS detector in 2012 at a centre-of-mass
energy of

p
B = 8 TeV, and correspond to an integrated luminosity of 20.2 fb�1. The mean number of

additional ?? interactions per bunch crossing (pile-up events) in the data set is approximately 20.

3 Cross-section measurement

The /-boson transverse-momentum distribution is measured in the electron and muon decay channels,
which provide a clear signature with low background rates and a high precision measurement of the
momentum, as presented in Ref. [45]. The double-differential cross sections as functions of transverse
momentum and rapidity (H) of the / boson are measured in the pole region, defined as 80 < <✓✓ < 100 GeV,
where <✓✓ is the invariant mass of the dilepton system. The combination of 6.2 million electron and

4

2309.12986 



ATLAS αs extraction

One of the most precise determinations of αs ! 
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Figure 5: Comparison of the determination of Us (</ ) from the /-boson transverse-momentum distribution with
other determinations at hadron colliders [17, 18, 20, 21], with the PDG category averages [3], with the lattice QCD
determination [10], and with the PDG world average.

determination with simultaneous determination of PDFs and strong-coupling constant. The measured
value of Us(</ ) = 0.11828+0.00084

�0.00088 is compatible with other determinations and with the world-average
value, as illustrated in Fig. 5.

Among experimental determinations, this is the most precise to date and the first based on N4LLa+N3LO
predictions in perturbative QCD. This result marks the start of a new era in precision studies of QCD with
the Drell-Yan process. The strong-coupling constant can be investigated with higher precision and in higher
energy regimes with future larger datasets.
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Figure 3: Determination of Us (</ ) at various different orders in the QCD perturbative expansion, using the MSHT20
PDF set. The filled area represents missing higher order uncertainties estimated through scale variations, the vertical
error bars include experimental and PDF uncertainties.

Table 1: Summary of the uncertainties for the determination of Us (</ ).

Experimental uncertainty +0.00044 -0.00044
PDF uncertainty +0.00051 -0.00051

Scale variations uncertainties +0.00042 -0.00042
Matching to fixed order 0 -0.00008
Non-perturbative model +0.00012 -0.00020

Flavour model +0.00021 -0.00029
QED ISR +0.00014 -0.00014

N4LL approximation +0.00004 -0.00004

Total +0.00084 -0.00088

quoted uncertainty. The inclusion of NLO electroweak corrections yields a shift on Us(</ ) of +0.00006,
uncertainties related to missing electroweak higher orders are considered negligible.

Uncertainties related to the numerical approximation or the incomplete knowledge of some of the coefficients
required for N4LL accuracy of ?T-resummation are estimated to contribute at the level of ±0.00004, with
the largest contribution coming from the numerical approximation of the cusp anomalous dimension at
five loops [39], and from the incomplete knowledge of the hard-collinear contributions at four loops [42].
Uncertainties due to the numerical approximation of the four loop splitting functions are already included
in the MSHT20 PDF uncertainties.

A summary of the uncertainties in the determination of Us(</ ) is shown in Table 1.

The goodness of fit is assessed by computing the value of the j
2 function with the theory predictions
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With these high-precision resummed and 
matched computations, we have entered a 
new regime of precision collider calculations. 

Unprecedented precision, but also difficult to 
be sure the uncertainties are reliably 
estimated… we have no previous experience 
with 1% precision at hadron colliders!



QCD made simpler: the physics of 
soft and collinear emissions



QCD made simple(r)
There are two limits where the perturbative expressions for 
the scattering of quarks and gluons simplify considerably 

• Collinear limit, where multiple particles move in a 
similar direction. 

• Soft limit, in which particles with small energy and 
momentum are emitted. 

At the same time the cross sections are enhanced in these 
regions (→ large logarithms!). 

• If these regions are relevant, we need to resum these 
contributions to all orders to get reliable predictions!



Collinear limit

In the limit           , where the partons become collinear, 
the n-parton amplitude factorizes into a product of an 
(n-1)-parton amplitude times a splitting amplitude      .

✓ ! 0

✓
Mn = Mn−1 × P (1)Mn = Mn−1 × P (1)=Mn = Mn−1 × Sp (1)

P ∼ (2)

Mn = Mn−1 × Sp (1)

P ∼ (2)
71



The splitting amplitude diverges as θ→0 and the 
factorization holds up to regular terms 

For the cross section, one finds 

  
Logarithmic enhancements at small angle, and 
also at small gluon energy. No interference!

Mn = Mn−1 × Sp (1)

dσn = CF dσn
dt

t
dz

dz

1 − z
(2)

dσn ∼ dσn−1

dθ

θ

dEg

Eg

dφ (3)

Mn = Mn−1 × P (1)Mn = Mn−1 × Sp (1)

P ∼ (2)



Soft limit
Also when particles with small energy and momentum 
are emitted, the amplitudes simplify: 

Soft emission factors from the rest of the amplitude.  

                                      in denominator leads to 
logarithmic enhancements at small energy and small 
angle.

p� k

k

p ⇥ . . . u(p)
pµ

p · k

. . .
p/� k/ + m

(p� k)2 �m2
�µ u(p)
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dσn = CF dσn
dt

t
dz

dz
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dφ (3)
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Since the emission of soft gluons is in the direction of 
the particle, the cross section for the emission of one 
gluon is 

So for massless particles soft emission is a pure 
interference effect, in marked contrast to collinear 
emissions!

Mn = Mn−1 × Sp (1)

dσn = CF dσn
dt

t
dz

dz

1 − z
(2)

dσn ∼ dσn−1

dθ

θ

dEg

Eg

dφ (3)

Sn = P exp

[

ig

∫

∞

0

ds ni · A
a
s(sni)T

a
i

]

dσsoft
n+1 =

αs

2π

dω
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dΩ

2π
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n
∑

i,j=1

Cij
ω2 pi · pj

pi · k pj · k

dσsoft
n+1 ∝ |Mn|

2

n
∑

i,j=1

pi · pj

dP (”no emission at θ”) = 1 −
∑

dP (”emissions at θ”)

color factor ~ Ti⋅Tj



Wilson lines
Soft emissions are only sensitive to the total charge of 
the object they radiate off.  Also, the emission of soft 
quarks is suppressed compared to gluon emission. 

Interactions can be represented as 

 niμ=piμ/E  is a vector in the direction of the energetic 
particle, and Tia is its color charge

Mn = Mn−1 × Sp (1)

dσn = CF dσn
dt

t
dz

dz

1 − z
(2)

dσn ∼ dσn−1

dθ

θ

dEg

Eg

dφ (3)

Si = P exp

[

ig

∫

∞

0

ds ni · A
a
s(sni)T

a
i

]

dσsoft
n+1 =

αs

2π

dω

ω

dΩ

2π
σn

n
∑

i,j=1

Cij
ω2 pi · pj

pi · k pj · k

dσsoft
n+1 ∝ |Mn|

2

n
∑

i,j=1

pi · pj

dP (”no emission at θ”) = 1 −
∑

dP (”emissions at θ”)

σ = H(Q2, µ)J(M2
X1

, µ)J(M2
X1

, µ) ⊗ S

p · k = E ω (1 − cos θ)



Link to parton shower
The parton shower generates multiple collinear 
emissions iteratively 

Without care, the shower will give the wrong result, even 
at LL, because it does not contain soft interference. 

• Angle ordering disentangles soft radiation 
interference

(repeat on each leg)

see e.g.  “QCD and Collider Physics”,  
by Ellis, Sterling and Webber



Soft-collinear factorization

Basis for higher-log resummation. More complicated than 
structure than what’s implemented in a parton shower: 

• Interference, color structure, spin, loop corrections.

H

J J

J J

S

Collins, Soper, Sterman,  ...

collinear emissions

soft emissions

virtual corrections



Soft-Collinear Effective Theory

Implements interplay between soft and collinear into 
effective field theory 
Hard 

Collinear 

Soft 

Correspondingly, EFT for such processes has two low-
energy modes: 
collinear fields describing the energetic partons propagating in 
each direction of large energy, and 

soft fields which mediate long range interactions among them.

}  high-energy

} low-energy part

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke, Diehl et al. 2002; ...



Diagrammatic Factorization
The simple structure of soft and collinear 
emissions forms the basis of the classic 
factorization proofs, which were obtained by 
analyzing Feynman diagrams. 

Advantages of the the SCET approach: 

Simpler to exploit gauge invariance on the 
Lagrangian level 

Operator definitions for the soft and collinear 
contributions 

Resummation with renormalization group 

Can include power corrections

J.C. Collins, D.E. Soper / Back-to-back lets 

/ .  
I 

421 

I 
_ J  

Fig. 7.2. Dominant integration region for e+e annihilation for small wr. In both fig. 7.1 and this figure, 
the soft gluon subgraphs may be disconnected. 

We begin by considering the slightly simpler process a + b ~ A + B + X, where a 
and b are quarks with momenta k~, and k~ respectively. Let k~, be collinear (as 
defined in subsect. 4.2) in the v~ direction and let k~ be collinear in the v~ 
direction. Then the dominant integration regions are as shown in fig. 7.3. 

Consider a graph G for this process. A subgraph T of G will be called a tulip 
if G can be decomposed into subgraphs as indicated in fig. 7.3 with T being the 
central (possibly disconnected) S subgraph connecting the "jet" subgraphs J a  and 
Jn. The jet subgraphs must be connected and be one particle irreducible in their 
gluon legs. 

A garden is a nested set of tulips. 
In analogy with subsect. 5.5, we define a regularized version GR of G by 

G R  = G + ~. ( - 1 ) N S ( T 1 ) S ( T 2 )  • • • S ( T n ) G .  (7.2) 
inequivalent 

gardens 

Here the operator S ( T )  makes the soft approximation on the attachments to the 
jets J A  and JB of the gluons leaving tulip T. The soft approximation for attachments 

Collins, Soper, Sterman 80’s ...

Collins and Soper ‘81
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