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Summary of simulations

Less is more
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Coordinate system
For graph building

* For graph building, we would choose every two
hits that are potentially from the same track

* In order to make the graph efficient, we should
make the selection window as narrow as possible

* Anhit-pair should be selected if the two hits are
within:
» Two different consecutive layers (keep in mind the
staves)

* A window of cone around the expected direction of
possible tracks

* Building a graph considering all the hits is not
possible, even if we apply the preselection

DESY. | FTX-SFT | Ashraf Mohamed | 14.12.2023

x — z angle
y — z angle




workflow

https://github.com/ashrafkasem/LUXEsimulationHTC
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Track segments

https://github.com/ashrafkasem/LUXETrackML https://github.com/LUXEsoftware/MarlinACTSTracking
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Sampling graph



Large graph concept

* Full Graph Training: Classically, models are trained using
the entire graph - all nodes and edges are used to
compute gradients

» Graph Segment Training: partition each large graph into
smaller segments and select a random subset of
segments to update the model

* How large our graph is:
on average: 70k particles per BX produces ~250k hits
every layer receives ~ 70k hits

*  While we build the graph we don’t know the truth
information we rely only on geometrical cuts to reject
fakes

» Graph Production Statistics:
Using 656 events, 46218570 particles in total
True edges: 143009166 Fake edges: 7780995637
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Bootstrapping

* Given a sample of n independent identically « In any one bootstrap sample some events will be
distributed observations Xy, X, ..., X, from a selected multiple times whereas some others will

distribution F not be selected at alll

» A parameter 0 of the distribution F with a real o .
valued estimator 6(X;, X5, ..., X,, ) « The distribution of the bootstrap samples is

« The bootstrap estimates the accuracy of the reasonably Gaussian

estimator by replacing F with F,,  The bootstrap, estimates the mean of

« The basic idea of bootstrap (resampling) is 6(Xy, X5 ..., X, ) by computing or approximating
making inference about an estimator 6 (such as the mean of
the sample mean) for a population parameter 6 on 0, = 00 (Ko ) Xy ey X )

a data sample

+ ltis a resampling method by independently
sampling with replacement from an existing
sample data with same sample size m < n, and
performing inference among these resampled
data
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Bootstrapping
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Bootstrapping large graph

* In the aforementioned paper the graph is for social
network

* In our case the graphs is of geometric nature, i.e.
the segments need to stack together to form a
complete track

» Sampling from the hits will lead to many incomplete
tracks i.e fakes will be high

« Sampling from track segments is computationally
expensive = need to build the entire graph
segments and then sample from them

« Sampling from the particles list is remarkably faster
and doesn’t lead to discontinuous tracks

» Sampling size is dependent on the number of
desired epochs --> each epoch while making the
batch, we pick different sample of the same events
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A segment

An edge

A node

Graph Production Statistics......
Using 8260 events, 29094320 particles in total
Total: True edges: 90026301 Fake edges: 244828904
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GNN

Architecture

~---------~[ [ [

gpu : A100-SXM4-80GB
Validation size : 10%
Training size : 90%
Lr:0.001

batch_size : 1

n_iters : 4
n_epoch : 100
hid_dim : 128

optimizer : Adam

A message-passing graph neural network model which .
performs binary classification of nodes. loss_func : BinaryCrossentropy
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Performance
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* Need closer look and some iterations on the batch_size, optimizer, learning_rates

(Stochastic nature of the gradient)
* Need to validate (us the model to predict) on full original graphs as validation datasets
« Training is not yet finished, but finishes today
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* Need closer look and some iterations on the batch_size, optimizer, learning_rates

(Stochastic nature of the gradient)
* Need to validate (us the model to predict) on full original graphs as validation datasets
« Training is not yet finished, but finishes today
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* Need closer look and some iterations on the batch_size, optimizer, learning_rates

(Stochastic nature of the gradient)
* Need to validate (us the model to predict) on full original graphs as validation datasets
« Training is not yet finished, but finishes today
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