
FPGA for real-time tracking at LUXE experiment

LUXE Simulation

Ashraf Mohamed
SFT meeting 14/12/2023

Page 2

Summary of simulations

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Less is more

Page 3

Coordinate system

| FTX-SFT | Ashraf Mohamed | 14.12.2023

For graph building

Bea
m P

ipe

𝑒!

• For graph building, we would choose every two
hits that are potentially from the same track

• In order to make the graph efficient, we should
make the selection window as narrow as possible

• A hit-pair should be selected if the two hits are
within:

• Two different consecutive layers (keep in mind the
staves)

• A window of cone around the expected direction of
possible tracks

• Building a graph considering all the hits is not
possible, even if we apply the preselection

𝑥 − 𝑧 angle
𝑦 − 𝑧 angle

Z-
AxisX-Axis

Y-
Ax

is

Page 4

workflow

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Hits Segments GNN

luxego
Ptarmigan

.h5
pyLCIO

.slcio edm4hep

Track segments

MarlinACTSTracking

https://github.com/ashrafkasem/LUXETrackML

https://github.com/ashrafkasem/LUXEsimulationHTC

https://github.com/LUXEsoftware/MarlinACTSTracking

Sampling graph

Page 6

Large graph concept

• Full Graph Training: Classically, models are trained using
the entire graph à all nodes and edges are used to
compute gradients

• Graph Segment Training: partition each large graph into
smaller segments and select a random subset of
segments to update the model

• How large our graph is:
on average: 70k particles per BX produces ~250k hits
every layer receives ~ 70k hits

• While we build the graph we don’t know the truth
information we rely only on geometrical cuts to reject
fakes

• Graph Production Statistics:
Using 656 events, 46218570 particles in total
True edges: 143009166 Fake edges: 7780995637

arXiv:2305.12322v2

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Page 7

Bootstrapping

• Given a sample of 𝑛 independent identically
distributed observations 𝑋!, 𝑋", … , 𝑋# from a
distribution 𝐹

• A parameter q of the distribution 𝐹 with a real
valued estimator q(𝑋!, 𝑋", … , 𝑋#)

• The bootstrap estimates the accuracy of the
estimator by replacing 𝐹 with 𝐹#,

• The basic idea of bootstrap (resampling) is
making inference about an estimator θ (such as
the sample mean) for a population parameter θ on
a data sample

• It is a resampling method by independently
sampling with replacement from an existing
sample data with same sample size 𝑚 < 𝑛, and
performing inference among these resampled
data

| FTX-SFT | Ashraf Mohamed | 14.12.2023

if you can estimate it, you can get an error on that estimate

• In any one bootstrap sample some events will be
selected multiple times whereas some others will
not be selected at all

• The distribution of the bootstrap samples is
reasonably Gaussian

• The bootstrap, estimates the mean of
q(𝑋1, 𝑋2, … , 𝑋𝑛) by computing or approximating
the mean of

𝜃$
∗= q$ 𝑋$1

∗, 𝑋$2
∗, … , 𝑋$𝑛

∗

Page 8

Bootstrapping

| FTX-SFT | Ashraf Mohamed | 14.12.2023

if you can estimate it, you can get an error on that estimate

&𝛼∗

mean

Standard deviation

Page 9

Bootstrapping large graph

• In the aforementioned paper the graph is for social
network

• In our case the graphs is of geometric nature, i.e.
the segments need to stack together to form a
complete track

• Sampling from the hits will lead to many incomplete
tracks i.e fakes will be high

• Sampling from track segments is computationally
expensive à need to build the entire graph
segments and then sample from them

• Sampling from the particles list is remarkably faster
and doesn’t lead to discontinuous tracks

• Sampling size is dependent on the number of
desired epochs --> each epoch while making the
batch, we pick different sample of the same events

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Sample particles not hits from google to LUXE (arXiv:2305.12322v2)

Graph Production Statistics......
Using 8260 events, 29094320 particles in total
Total: True edges: 90026301 Fake edges: 244828904

Page 10

GNN

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Architecture

A module which computes weights for edges of the
graph. For each edge, it selects the associated nodes'
features and applies some fully-connected network layers
with a final sigmoid activation.

A module which computes new node features on the
graph. For each node, it aggregates the neighbour node
features (separately on the input and output side), and
combines them with the node's previous features in a
fully-connected network to compute the new features

A message-passing graph neural network model which
performs binary classification of nodes.

Input transformation layer
gpu : A100-SXM4-80GB

Validation size : 10%

Training size : 90%

Lr : 0.001

batch_size : 1

n_iters : 4

n_epoch : 100

hid_dim : 128

optimizer : Adam

loss_func : BinaryCrossentropy

Page 11

Performance

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Preliminarily

• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = %&'%#
%#'(&'(#'%&

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = %&
%&'(&

 # also
named purity

• 𝑟𝑒𝑐𝑎𝑙𝑙	 = %&
%&'(#

 # also
named efficiency

• 𝑓1	 = "∗&*+,-.-/#∗*+,011
&*+,-.-/#'*+,011

	

• Need closer look and some iterations on the batch_size, optimizer, learning_rates
(Stochastic nature of the gradient)

• Need to validate (us the model to predict) on full original graphs as validation datasets
• Training is not yet finished, but finishes today

Page 12

Performance

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Preliminarily

• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = %&'%#
%#'(&'(#'%&

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = %&
%&'(&

 # also
named purity

• 𝑟𝑒𝑐𝑎𝑙𝑙	 = %&
%&'(#

 # also
named efficiency

• 𝑓1	 = "∗&*+,-.-/#∗*+,011
&*+,-.-/#'*+,011

	

• Need closer look and some iterations on the batch_size, optimizer, learning_rates
(Stochastic nature of the gradient)

• Need to validate (us the model to predict) on full original graphs as validation datasets
• Training is not yet finished, but finishes today

Page 13

Performance

| FTX-SFT | Ashraf Mohamed | 14.12.2023

Preliminarily

• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = %&'%#
%#'(&'(#'%&

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = %&
%&'(&

 # also
named purity

• 𝑟𝑒𝑐𝑎𝑙𝑙	 = %&
%&'(#

 # also
named efficiency

• 𝑓1	 = "∗&*+,-.-/#∗*+,011
&*+,-.-/#'*+,011

	

• Need closer look and some iterations on the batch_size, optimizer, learning_rates
(Stochastic nature of the gradient)

• Need to validate (us the model to predict) on full original graphs as validation datasets
• Training is not yet finished, but finishes today

Thanks

