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Introduction and motivation

In this talk I study supersymmetric Wilson loops in N = 4

supersymmetric Yang-Mills theory in four dimensions. Like all

gauge theories it has the vector fields Aµ, with µ = 1, · · · 4 (I will

work in Euclidean space). In addition there are 4 fermi fields ΨA

(with A = 1, · · · 4) and six scalars ΦI (with I = 1, · · · 6).

I will mainly concentrate in this talk on the gauge theory side and

mention only briefly the dual string theory on AdS5 × S5. But for

every calculation that is done on the gauge theory side there is an

analogous one in string theory.

This theory has a remarkable amount of symmetry. The Poincaré

symmetry is enlarged to a the conformal supergroup PSU(2, 2|4),
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whose even part is SO(5, 1) × SO(6). The symmetry generators are

Jµν , rotations/Lorentz transformations ,

Pµ , translations ,

Kµ , special conformal transformations ,

D , dilation ,

LAB , SU(4) rotations ,

QA
α , Q̄

A
α̇ , Poincaré supersymmetries ,

SA
α , S̄

A
α̇ , superconformal symmetries .

Like in other supersymmetric theories there are certain operators

that preserve some of the supersymmetries and will have special

properties. Consider the complex combinations of the scalar fields

X = Φ1 + iΦ2 , Y = Φ3 + iΦ4 , Z = Φ5 + iΦ6 .

Each is charged under a U(1) subgroup of SO(6).
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It is easy to show that operators made only from holomorphic

combinations of those fields will preserve some supersymmetries,

i.e. they will be annihilated by some of the Q generators. For

example the variation of ZJ is

δZJ ≃ J Ψ̄(ρ5 + iρ6)ǫ(x) ,

where the ρ’s are SO(6) gamma matrices and ǫ is made of two

16-component spinors, one constant and one a conformal Killing

spinor

ǫ(x) = ǫ0 + xµγµǫ1 ,

For an operator at the origin the variation will be zero for arbitrary

ǫ1 and half of the ǫ0. This means that ZJ it is annihilated by all

the S and by half of the Qs.

Such an operator is a chiral primary, and acting on it with the Q

operators (which do not annihilate it) will generate the

supermultiplet it belongs to.
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A lot is know about local operators in this gauge theory. Those

supersymmetric operators have protected dimensions and 3-point

functions, which are given completely by their charges. Actually in

the study of local operators a lot of progress has been achieved in

the past few years and there is a good understanding of the

spectrum of very long operators, even those not preserving any

supersymmetry and a good agreement between the gauge theory

and the dual string theory in AdS5 × S5.

In this talk I will not discuss local operators, but rather Wilson

loops. Those can be also supersymmetric, as I will show, but a lot

less is known about them. Those operators form a very interesting

set of observables, in a confining theory they exhibit the famous

area-law. In our case they will not confine, but they still provide

non-local data on the theory. In the string dual they are described

by semi-classical strings (or branes) and therefore touch on stringy

properties of the gauge theory.
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In any gauge theory one may define Wilson loop operators as

W = TrP exp i

∮

Aµ dx
µ ,

along a closed path xµ(s). Those operators turn out to be

supersymmetric only when the path is light-like (which of course

will not occur in the Euclidean theory).

To find supersymmetric operators it’s possible to add extra terms,

couplings to the Fermi-fields and scalars. I will consider the

modification

W = TrP exp

∮

(iAµẋ
µ + |ẋ|ΘIΦI)ds ,

where ΘI are arbitrary functions of s.

How does one choose those ΘI to get supersymmetric operators?
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⋄ 1/2 BPS: Circle
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⋄ 1/8 BPS: S2 observables

⋄ 1/8 BPS: Zarembo limit

• YM2 and the matrix model

• Discussion.
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The “Zarembo loops”

Consider the straight Wilson loop in the x1 direction coupled to

the scalar Φ1

W = TrP exp

∮

(iA1 + Φ1)dx1 .

Its supersymmetry variation will be proportional to

(iγ1 + ρ1γ5)ǫ(x). This combination of gamma matrices has half

vanishing eigenvalues, so this loop is 1/2 BPS.

The same will be true if we take the line in the x2 direction coupled

to the scalar Φ2, and gets the projector iγ2 + ρ2γ5 which commutes

with the above one, so the combined system is 1/4 BPS. More

generally, one can consider an arbitrary curve, and if Aµ is always

accompanied by Mµ
IΦI (with some norm-preserving matrix M),

the loop will be supersymmetric. At every point along the loop we

will find a linear combination of the equations above.

N. Drukker, Wilson loops in 4, 2, & 0 dim. 8 DESY



'

&

$

%

If the curve is confined to a straight line, the loop will be 1/2 BPS,

in a plane, 1/4, in R
3 it will be 1/8, and for an arbitrary curve,

1/16.

Quite amazingly all those loops have expectation value unity, which

can be seen (perturbatively) both in the gauge theory and in string

theory. There are also arguments why this would apply to all

orders in perturbation theory.

This is an amazing fact, and those operators are quite interesting,

but there isn’t much to calculate with them... Also this family of

loops does not include the 1/2 BPS circular loop. This is a circle

coupled to only one scalar, which turns out to be supersymmetric

too. That operator has non-trivial VEV, and we want to find

generalizations of it in the rest of the talk.
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Some geometry

The Wilson loops I will describe will live on an S3 subspace of R
4.

To describe them I need some basic facts about the

three-dimensional sphere.

Sometimes I will use Cartesian coordinates

x1, x2, x3, x4, x2
1 + x2

2 + x2
3 + x2

4 = 1 .

One can also use the Pauli matrices and the unit matrix to define

the SU(2) group element

U(x) = ixiτi + x4
I .

The right 1-forms (which are invariant under left action of SU(2))

and the left forms are

σR
i = −i tr (τi U(x)† dU(x)) , σL

i = −i tr (τi dU(x)U(x)†) .
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This gives

σR,L
1 = 2

[

±(x2dx3 − x3dx2) + (x4dx1 − x1dx4)
]

σR,L
2 = 2

[

±(x3dx1 − x1dx3) + (x4dx2 − x2dx4)
]

σR,L
3 = 2

[

±(x1dx2 − x2dx1) + (x4dx3 − x3dx4)
]

,

Each of the 1-forms is dual to the vector fields that generate the

group action. Each of them is a globally defined constant norm

vector field.

One more thing to notice is that if we restrict to an S2, then

σR
i = 2ǫijkx

jdxk .
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The Wilson loops on S
3

It’s simplest to write our new loops as

W =
1

N
Tr P exp

∮
(

iA+
1

2
σR

i M
i
IΦ

I

)

,

So if Zarembo replaced A→ A+Mµ
IΦIdx

µ, we are doing the

same, but instead of the flat-space one-forms dxµ we are using the

natural forms on S3, the σR
i . From now on I will take M that

identifies i and I.

We should verify that this construction indeed leads to

supersymmetric operators. The supersymmetry variation of the

loop gives (σ̄ is the pullback of the one forms along the curve)

δW ≃

(

iẋµγµ +
1

2
σ̄R

i ρ
iγ5

)

ǫ(x) ,
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Let us concentrate on anti-chiral spinors, satisfying γ5ǫ− = −ǫ−. In

that case the γs can be represented by Pauli matrices and

xµγµǫ
− = U(x)†ǫ−. Then most of the x and ẋ dependence in the

last equation can be expressed in terms of σ̄R
i .

We rearrange the variation of the loop as

δW ≃
1

2
σ̄R

i

(

τ iǫ−1 − ρiǫ−0 − xηγη(τ iǫ−0 − ρiǫ−1 )
)

.

This will vanish when

τ iǫ−1 = ρiǫ−0 .

For special curves, when the pull-backs of the forms are not

independent, there will be more solutions and the Wilson loops will

preserve more supersymmetry. We will demonstrate this in some

special cases below.
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The Wilson loops couple to only three of the scalars, so we may

consider the breaking of SO(6) to SU(2)A × SU(2)B. The

supersymmetry equations involve only three of the ρs, which we

may represent in terms of Pauli matrices τA
i .

Eliminating ǫR0 from the last equation we get the relation

(τR
i + τA

i )ǫ−1 = 0 ,

and the same is true for ǫ−0 .

So under the sum of the two groups SU(2)R + SU(2)A, the

supercharges have to be singlets. Using ȧ, a indices for SU(2)A and

SU(2)B, the supercharges preserved by the loops are

Q̄a = εα̇ȧ
(

Q̄a
α̇ȧ − S̄a

α̇ȧ

)

.
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Examples:

1/2 BPS: Circle

Consider a circle in the x1, x2 plane. Along this curve

σ̄R
1 = σ̄R

2 = 0 , σ̄R
3 = |ẋ| .

So it will couple to a single scalar Φ3. Most of the constraints on ǫ

derived before for the general curve do not appear now, and this

loop is annihilated by half the supersymmetries. Of the

PSU(2, 2|4) of the vacuum it preserves the supergroup OSp(4⋆|4).

An interesting fact about this loop is that in perturbation theory

the combined propagator, including both the scalar and the gauge

field

g2
Y Mδab

4π2

1 − ẋ(1) · ẋ(2)

(x(1) − x(2))2
=
g2

Y Mδab

4π2

1 − ẋ(1) · ẋ(2)

(2 − 2x(1) · x(2))
=
g2

Y Mδab

8π2
,

between two arbitrary points is just a constant.
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This allows one to represent all ladder diagrams in terms of a

0-dimensional Gaussian matrix model and calculate it exactly

〈W 〉ladders =
1

Z

∫

DM
1

N
Tr eM e

− 2

g2
Tr M2

.

The result of this integral can be expressed in terms of a Laguerre

polynomial and it can then be studied in the large N and/or the

large g2N regime, and compared to string theory on AdS5 × S5.

In this calculation the planar result at large g2N is given by a

semiclassical string, whose action agrees with the leading exponent

in the strong coupling expansion of the matrix model. It was even

possible to go beyond the planar approximation and calculate all

the 1/N corrections by comparing to a certain D3-brane in AdS,

and again the results exactly agreed.

N. Drukker, Wilson loops in 4, 2, & 0 dim. 16 DESY



'

&

$

%

1/4 BPS: More circles (1)

I will take now more than one circle, but will make sure that all of

them couple to the same scalar Φ3. To do that within our

framework, parameterize the sphere by

x1 = − sin
θ

2
sin

ψ − φ

2
, x2 = sin

θ

2
cos

ψ − φ

2
,

x3 = cos
θ

2
sin

ψ + φ

2
, x4 = cos

θ

2
cos

ψ + φ

2
,

Each of the circles will have constant θ and φ while ψ will vary

along them. This construction is related to the writing of S3 as a

Hopf-fibration. Each circle will be along a different fiber.

This combined system of several different circles will preserve eight

supercharges, all of them with the same chirality. An amazing fact,

that is quite simple to check, is that even between different circles

the propagator is the same constant as before.

N. Drukker, Wilson loops in 4, 2, & 0 dim. 17 DESY
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So two coincident circles and two that are separated in this way

have exactly the same interactions. This is analogous to the fact

that parallel lines in flat space do not interact. Here they do

interact, but this interaction is independent of the relative position.

We can again calculate them using the matrix model and they will

be more complicated observables

〈W 〉ladders =

〈

(

1

N
Tr eM

)k
〉

matrix model

,

For k circles.

At the planar level this is just the same as k non-interacting circles,

and in AdS5 × S5 will be given by k independent string surfaces.

We have not calculated the connected part from the string side.

N. Drukker, Wilson loops in 4, 2, & 0 dim. 18 DESY
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1/8 BPS: S2 observables

Let us consider now a much more general loop, any curve on a

maximal S2 inside our S3. All those loops will preserve 4

supercharges, since on S2 the forms satisfy

σL
i = −σR

i = −2ǫijkx
j dxk .

So in addition to the two anti-chiral supercharges, those loops

preserve two chiral supercharges.

A cute fact is that if we have a curve on ~x(s) on S2, it will have

gauge couplings ~̇x and scalar couplings ~x× ~̇x. Note that this if we

take |ẋ| = 1, then this is also a vector on S2, so we can consider the

Wilson loop with that shape. Its scalar coupling would be

(~x× ~̇x) × (~x× ~̈x) = −~x(~̇x · (~x× ~̈x) ∝ ~x ,

This suggests a duality between the gauge and scalar couplings. we

still do not understand the significance of this relation.

N. Drukker, Wilson loops in 4, 2, & 0 dim. 19 DESY
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1/4 BPS: Small circle, “latitude”

Now take a non-maximal circle, or a latitude on S2. Explicitly,

~x = (sin θ0 cos t, sin θ0 sin t, cos θ0) ,

~x× ~̇x = sin θ0(− cos θ0 cos t, − cos θ0 sin t, sin θ0) .

Here you see an explicit example of this duality, which is just

θ0 ↔ π/2 − θ0.

Those loops preserve 1/4 of the supersymmetry. Here too the

propagators are constants, proportional to sin2 θ0, leading to the

same matrix model as in the 1/2 BPS case with the replacement

g2N → g2N sin2 θ0.

Those loops can also be calculated by a string in AdS5 × S5 and

the result is that the classical action of the string is

S = −
√

g2N | sin θ0|, so the same scaling of g2N works, and

matches the large g2N result of the matrix model. Furthermore, in

string theory there is a second saddle point with the sign of the

N. Drukker, Wilson loops in 4, 2, & 0 dim. 20 DESY
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action reversed, which matches another term in the matrix model.

In the limit of small θ0, of infinitesimal loops, the string is very

“small” and one can calculate its fluctuations. Considering just the

contribution of the zero modes broken by the small θ0 gives an

answer that matches with the full planar result of the matrix model.

Finally one can also calculate this loop using a D3-brane rather

than a fundamental string and again the result agrees with the

perturbative matrix model, this time including all 1/N corrections

at large g2N .
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1/4 BPS: More circles (2), “longitudes”

I mentioned the case of “parallel circles” before. But if we take

two large circles that are not parallel, they intersect at two points.

Then it’s possible to consider the loop made from half of those two

circles. Going from the north pole of S2 to the southern one and

then back along a different longitude to the northern one.

xµ = (sin t, 0, cos t, 0) , 0 ≤ t ≤ π ,

xµ = (− cos δ sin t,− sin δ sin t, cos t, 0) , π ≤ t ≤ 2π .

The loop will couple to Φ2 along the first arc and to

−Φ2 cos δ + Φ1 sin δ along the second one.

This loop will preserve also 1/4 of the supersymmetries. It is also

interesting in this case to conformally map it to the plane by a

stereographic projection. One would get a cusp with opening angle

δ, and along each of the rays it will couple to the combination of

scalars written above. This new loop is of the class studied by

N. Drukker, Wilson loops in 4, 2, & 0 dim. 22 DESY
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Zarembo, where the scalar coupling is linearly related to the

tangent vector. Therefore it has trivial expectation value.

But the original latitudes on S2 is non-trivial. We calculated it at

leading order in perturbation theory and found

〈W 〉 = 1 +
g2N

8π2
δ(2π − δ) +O(g4) .

The next term is quite complicated and we have not been able to do

it yet. But we were able to find the string solution for this surface,

and though it’s quite subtle, we found the finite part of the action

S = −

√

g2Nδ(2π − δ)

π
.

We see once more that both the perturbative and string theory

result are related to the usual circle by a rescaling of the coupling.

This leads to the conjecture that this loop is also given by the

matrix model, even though the propagators are not constant.
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1/8 BPS: Zarembo limit

After all those examples of previously unstudied supersymmetric

Wilson loops, it’s also possible to recover the 1/8 BPS loops

considered by Zarembo.

Consider infinitesimal loops, say around the point x4 = 1. Then

σR,L
i ∼ dxi for i = 1, 2, 3 and locally the invariant 1-forms on S3

are exact differentials. So those loops will approximate the loops of

Zarembo.

More precisely, we can rescale the sphere as we get closer to that

point, keeping the size of the loops finite. In the infinite radius

limit, the curves are in flat R
3 and the scalar couplings

proportional to the tangent vectors, which is exactly the

construction of Zarembo.

Note that we cannot reproduce, by our construction, his 1/16 BPS

loops.
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Y M2 and the matrix model

We saw that in all the explicit examples on S2 the result was the

same as the circle with a modified coupling. How does that come

about?

We may write the loop on S2 as

W = TrP exp

∮

(iAµẋ
µ + (x× ẋ)µM

µ
I ΦI)ds ,

Let me calculate this again in perturbation theory. For the circle

we saw that the propagator was a constant. More generally this

will not be true. But I will still combine the vector and scalar

terms together. At leading order in perturbation theory one gets

the effective propagator

g2
Y Mδab

4π2

−ẋ(1) · ẋ(2) + (x(1) × ẋ(1)) · (x(2) × ẋ(2))

(x(1) − x(2))2
,
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Evaluating the cross product one finds

ẋµ

(1)ẋ
ν
(2)

g2
Y Mδab

4π2

(

δµν

2
−

xν
(1)x

µ

(2)

(x(1) − x(2))2

)

.

Interestingly, though we are in four dimensional space, instead of

having mass dimension two, the resulting effective propagator is

dimensionless.

That would be the expected behavior for a vector propagator in

two-dimensions. Indeed the last expression can serve as a

propagator for YM2 on the unit two-sphere with coupling

−g2
Y M/4π2.

So the sum of all non-interacting graphs for those Wilson loops on

S2 agrees with that of YM2. That problem is famously solved and

the result is

〈W 〉2d ∼ e
g2

Y M
N

8π2
A1 ,
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where A1 and A2 are the areas of the two parts of S2 defined by

the curve.

This does not agree with the result of the AdS calculation, not for

the 1/2 BPS circle and not for the other examples. So what did I

do wrong?

Such a discrepancy has appeared already in YM2 as was explored

by Staudacher-Krauth and resolved by Bassetto-Griguolo. In

perturbation theory one may be missing instanton corrections that

are included in the full non-perturbative solution. We are doing a

perturbative calculation, so we should compare to the perturbative

results, excluding instantons.
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In those papers they found that the perturbative result for YM2 on

the sphere is given by the function

〈W 〉pert. Y M2
=

1

N
eg2 A1A2

32π2 L1
N−1

(

−g2A1A2

16π2

)

Where L1
N−1 is a Laguerre polynomial.

In the planar approximation this is

〈W 〉planar =
4π

√

g2
Y MNA1A2

I1

(

1

2π

√

g2
Y MN A1A2

)

.

At weak coupling this goes as

〈W 〉 ∼ 1 −
g2

Y MN

32π2
A1A2 +O(g4

Y MN2) ,

and at strong coupling

〈W 〉 ∼ exp

(

1

2π

√

g2
Y MN A1A2

)

.
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Those above expressions agree with ALL explicit calculations done

so far!

For the 1/2 BPS circle, A1 = A2 = 2π, and this Laguerre

polynomial is exactly the result of the Gaussian matrix model.

For the 1/4 BPS latitude A1,2 = 2π(1 ± cos θ0), so the full

perturbative result is given by the regular circle with

g2 → g2 sin2 θ0, in agreement with the sum of ladders.

For the latitude example we do not have an all-order calculation,

only the first terms at weak and strong coupling. There A1 = 2δ

and A2 = 2(2π − δ) and the weak and strong coupling results are

reproduced by g2 → g2(2π − δ)δ/π2.

From those calculations it seems that Wilson loops on S2 are given

by the perturbative expansion of 2-dimensional Yang-Mills on the

sphere. This provides a subsector of N = 4 which is invariant

under area-preserving diffeomophisms.
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Discussion

• I presented an infinite family of new supersymmetric Wilson

loops by adjusting the scalar couplings for any curve on S3.

• Unlike Zarembo’s loops, they have non-trivial expectation

values, giving many new interesting observables that may be

calculated in the gauge theory or AdS5 × S5.

• A new configuration I considered are several circles following

the Hopf-fibers of S3. This combined system preserves eight

chiral supercharges and seems like a natural generalization of

the set of parallel lines in flat space. The interaction between

them is independent of the distance.

• When the curves are restricted to an S2, the supersymmetry is

doubled. Specific curves were 1/4 BPS.

• For curves on S2 the perturbative series seems to agree with

2-dimensional Yang-Mills.
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The end

N. Drukker, Wilson loops in 4, 2, & 0 dim. 31 DESY


