
1

QCD: Phases and Tc

� Overview

� Finite-temperature phases and Tc

� Dynamical look into QGP

� Future Prospects

Akira Ukawa
Center for Computational Sciences
University of Tsukuba

DESY Theory Workshop 2007
26 September 2007



2

Overview

Now is a very interesting period for hot QCD:

� Experimental input from RHIC

� Strong correlation above Tc

� Analytical insights from string theory

� Thermodynamics and transport of QCD-like theories

� Progress in lattice QCD itself

� Full QCD simulations with physical up, down, and 
strange quark masses using multi-time step algorithm 

� Simulations with chirally symmetric lattice quark 
action using domain wall or overlap fermion method 
(so far mostly at T=0)
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This review:

� Finite-temperature phases and Tc

� Phase transition for physical up, down and strange 
quark masses?

� Tc

� Equation of state 

� Dynamics of the QGP phase

� Fate of charmonium above Tc

� Transport

� Future prospects

� Simulations with chiral symmetry
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Schematic QCD phase diagram
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Comments on finite-density QCD

� The “sign problem”, i.e., large 

phase fluctuation of the quark 

determinant detD for non-zero 

density

� Slow but steady progress over the 

years for not too large baryon 

density:

� Estimate of the end point of the 1st

order line on the T-µ plane 

� Still no real prospect for large 

baryon number density

[ ] [ ]( )USUDdUZ gluonnQCD −= ∫∏ expdetµ

2-parameter reweigting method:
Z. Fodor, S. Katz, JHEP 0404 (2004) 050 
Nf=2+1, Nt=4  

Taylor expansion method:
C. Allton etal, Phys.Rev. D71 (2005) 054508
Nf=2, Lt=4 

( ) ( )MeVT EE 40360,2162, ±±=µ
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Finite-temperature phases and Tc at µB=0

( ) 2/5*

ssud mmm −∝

Tricritical point

Second-order 
D=3 Ising universality

D=3 Z(3) 
Potts
universality

QCDN f 12 +=

Consistent with simulations so far;need full confirmation.

And where is the physical point? 
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Phase transition analyses 

� Long-standing issue addressed by a large number of 
simulations since mid 1980’s

� Bielefeld group, MILC Collaboration, JLQCD Collaboration etc

� Significant methodological developments over the years

� finite-size scaling techniques

� incorporation of dynamical quarks, etc

� Recent work employs dynamical staggered up, down, 

strange quark with realistically small quark masses

� Wuppertal group, Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K. 
Szabo, 

Nature 443 (2006) 675-678; 

Phys.Lett. B643 (2006) 46-54; 

JHEP 0601 (2006) 089

� Bielefeld-RBRC-BNL Collaboration, M. Cheng et al, 

Phys.Rev. D75 (2007) 034506 , 

Phys.Rev. D74 (2006) 054507 
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strategy of the Wuppertal Group

� Concentrate at the physical point

� Full QCD simulation using  staggered quark action for up, 
down, and strange quark 

� Quark masses tuned the physical values with a separate T=0 
simulation

� Vary coupling 1/g2(a) to change temperature T=1/Nta and 
locate the transition 

� Finite-size scaling analysis of susceptibilities to identify the 
nature of transition

� Continuum limit extrapolation
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Y. Aoki et al, Nature 443 (2006) 675-678
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Results for chiral susceptibility

� Constant behavior for increasing volume shows a crossover at 
finite lattice spacing 

Y. Aoki et al, Nature 443 (2006) 675-678
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Continuum limit extrapolation

χ2

4

qm

T

Extrapolation to 
the continuum

Finite-size scaling in the 
continuum shows that the 
transition is a crossover, at 
least for the Staggered quark 
formalism VTc

3
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Comments

� Theoretical uncertainties with the staggered simulations
� Only U(1)xU(1) chiral symmetry out of SU(Nf)xSU(Nf)

� Fractional power of quark determinant [detD(U)] Nf/4 to “adjust”
the #flavor 

� Does it converge to the correct QCD in the continuum limit?

� OK perturbatively, but is it at the non-perturbative level?

� Lots of discussions in the the community, not yet settled:
� Lattice06 

S. Sharpe, “Rooted staggered fermions: good, bad, or ugly?”

� Lattice07

M. Creutz, “Why rooting fails”

A. Kronfeld, “Lattice QCD with Staggered Quarks: Why, Where, and How”

� Clearly desirable to work with chiral action:

� Domain-wall

� Overlap

Much work and many simulations already done at T=0, so 
hot/dense QCD is the next natural target.
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Nature of the 2nd order endline

� Existence of the endline well 
established around 2000

JLQCD/Bielefeld/Columbia

� Binder cumulant test to 
distinguish universality class

� Clear evidence of Ising
universality as predicted by 
S. Gavin et al

� Recent analyses confirm 
these results

( )

( )
2

2

4

4

ψψδ

ψψδ
=B

Karsch et al Phys.Lett. B520 (2001) 41-49 

S. Gavin et al 
Phys.Rev. D49 (1994) 3079-3082 

G. Endrodi etal, Lattice2007
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Physical point 

Phase diagram according to lattice QCD with 
staggered quark action
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Transition temperature Tc at the 
physical point

Summary 
by F. Karsch
at Lattice07

Two notable features

� Disagreement 
using the same 
quantity 

� Disagreement 
using different 
quantities
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Disagreement using different quantities?

� Chiral susceptibility

� Quark number susceptibility

� Polyakov loop susceptibility
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Y. Aoki etal Phys.Lett. B643 (2006) 46-54

� Possible for a crossover

� Inflection point for χs and P do 
not seem clearcut large and 

mutually overlapping width

� No cause for worry
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Disagreement using the same quantity?

� Too different beyond error; has to be resolved

� Possible origin of the difference

� Choice of action

� Both staggered but improved in a different 

manner; “p4fat3” vs “stout-inproved”

� Scale setting

� Using r0 vs fK

� Temporal lattice size and continuum 

extrapolation 

� Nt =4, 6 vs 4,6,8,10

Further simulations 
being undertaken in 
USA to settle the 
difference, so we wait…
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Equation of state

� Recent results from MILC and Bielefeld-RBRC

� Agreement between the two groups; qualitatively no change since 
previous results
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Dynamical look into QGP

� Non-trivial task for lattice QCD since real-time 
information needed

� Spectral density ρ(ω) used for extracting several 

quantities

� Excitation spectrum

� Transport coefficients via Kubo formula

� In practice,

( ) ( ) ( ) ( )ωρ
ω

τω

π

ω
ττ
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Imaginary time Green’s 
function directly calculated 
on the lattice

• assume a functional form or 
• parameter free inference methods 
such as the Maximum entropy method 
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Charmonium above Tc (I)

� Important probe since the early days of QGP studies as 

pointed out by Matsui-Satz

� Quenched QCD simulations indicate 

J/Psi, ηc survive up to 1.5Tc, but χc states melt just 

above Tc

Asakawa Hatsuda, PRL92 (2004) 012001 

Datta, Karsch, Petreczky, Wetzorke, PRD69 (2004) 094507 

Jakovac, Petreczky, Petrov, Velvtsky, PRD75 (2007) 014506

� Recent progress

� Full QCD?

� Constant mode and orbital states
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anisotropic lattice, 323 x (96-32)

ξ=4.0, at=0.01 fm, (Ls=1.25fm)

J/ψ ηc

Asakawa & Hatsuda, PRL92 (2004) 012001 

Datta, Karsch, Petreczky & Wetzorke, 
PRD69 (2004) 094507 

J/ψ χ
c

isotropic lattice, 483 x(24-12), 

a=0.04 fm (Ls=1.9 fm)

MEM results for charmonium above Tc
in quenched QCD
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Charmonium results for 2-flavor QCD

� J/ψ and ηc states survive 
at least to T 2Tc 

� Χc states melt just above 

Tc

Aarts, Allton, Bugrahan, Peardon, Skullerud, hep-lat/0705.2198
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As in quenched QCD, however,…



22

Constant mode at finite T 

� There is a constant contribution in meson 

correlators at finite T

� This needs to be subtracted for proper spectral 

analyses

( ) ( )
( )τ

ττ

q

qq

m

mm

2exp

expexp

−=

−⋅−∝

T. Umeda, Phys.Rev.D75:094502,2007 
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An illustration in quenched QCD
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Transport coefficients

� Very limited work over the years
� Karsch, Wylde, PRD35 (1987)2518

� S. Gupta, PLB597(2004)57

� Nakamura, Sakai, PRL94 (2005)072305

� Aarts, Allton. Foley, Hands, Kim, PRL99(2007)022002

� H. B. Meyer, hep-lat/0704.1801

� resurgence of interest due to RHIC experiment

e.g., 

� Application of the Kubo formula
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Quenched result for shear viscosity

243x8 Nakamura, Sakai, hep-lat/0510100

203x8,283x8 H. Myer, hep-lat/0704.1801

T/Tc

η/s

AdS/CFT

pQCD

Kovtun, Son & Starinets, 

PRL94(2005)111601 

Baym, Monien, Pethick, Ravenhall, 

PRL64 (1990)1867.
Arnold, Moore & Yaffe, JHEP 
0305(2003)051. 
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Future prospects

� Conditions for realistic lattice QCD simulations

� Large enough volume

� Small enough lattice spacing

� Dyamical up, down, strange quark with physical masses

� quark action with exact chiral symmetry

� Bulk of finite-temperature simulations still done with the 
staggered and Wilson fromalism which do not have exact 
chiral symmetry

� However, much progress since around 2000 with exactly 
chiral fermion simulations
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Lattice fermion with exact chiral
symmetry

� Theoretically based on the Ginsparg-Wilson relation:

� Domain-wall fermion Kaplan(’92)/Furman-Shamir(’94)

� Overlap formalism Neuberger-Narayanan(’92,’97)

� Fixed point action Hasenfratz-Neidermyer(’94)

� Avoids the Nielesen-Ninomiya Theorem by using “infinitely”

many fields , e.g.,
Introduction of 5th dimension (domain-wall)

Singular quark operator (overlap)

hence needs more computer power

� Presently concentrated on T=0 simulations: 

� Current full QCD runs with O(10) Tflop computers

domain wall  243x48 mudms/10 RBRC-UKQCD QCDOC

Overlap 163x32 mudms/10 JLQCD BlueGene/L

� Next target should be hot/dense QCD simulations

DaDRDD 555 2 γγγ =+
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conclusions

� Very interesting period when experiment, 

theory, and simulations begin to meet

� Physical results with realistically light quark 

spectrum begin to be obtained for the bulk 

thermodynamical quantities

� Phase diagram, Tc, equation of state, …

� Effort toward dynamics spurred by RHIC 

experiement; will continue to increase

� Hope for exact chiral fermion simulations seem 

realistic in the near future 


