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N=4 SYM and AdS/CFT

* N=4 SYM for gauge group SU(N,):
scale-invariant (conformal) field theory
forall g: f(g) =0

» AdS/CFT duality — wiwen:  Baroon tieworkencp
suggests that weak-coupling perturbation
series in A = g°N, for planar limit (large N,)
should have special properties, because

strong-coupling limit <> weakly-coupled gravity/string theory
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Gluon scattering in N=4 SYM

« Some quantities are protected, unrenormalized, so
the series in A is trivial (e.g. energies of BPS states)

« 2 22 gluon scattering amplitudes are not protected

How does series organize itself into result, from
gravity/string point of view?  Anastasiou, Bern, LD, Kosower

 Cusp anomalous dimension y,{A) is a new, nontrivial
example, solved to all orders in A using integrability

Beisert, Eden, Staudacher; Aryutunov, Beisert, this workshop

- Proposal: yK(k? is one of just four functions of A
alone, which fully specify gluon scattering to all

orders in ), for any scattering angle ¢ (value of 1/s).
And they specify n-gluon MHV amplitudes. z:/ 1D, Smirmov
» Recent confirmation for 2 - 2 at strong coupling.

L n—point? Alday, Maldacena, 0705.0303[th]; Maldacena, this workshop
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Some gquestions you might have

L. Dixon

What are gluons? They're certainly
not the gauge-invariant local operators
found in the usual AdS/CFT dictionary.
Alday, Maldacena
What does scattering mean in a
conformal field theory, in which the
interactions never shut off?

What are the other functions of A?

What is the evidence for this proposal
at weak coupliing?
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“String Theory Meets Collider Physics”

« Gluons (in QCD, not N=4 SYM) are the objects colliding
at the LHC (most of the time).

- Interactions between gluons never turn off in QCD
either. In fact, it is worse, due to asymptotic freedom
— the coupling grows at large distances.

 We use dimensional regularization, with D=4-2¢, to
regulate these long-distance, mfrared (IR) dlvergences
(Actually, dimensional reduction/ex é)ansmn to preserve
all the supersymmetry.) Atthe LHC, IR divergences in
loop diagrams cancel against real emission of gluons.

* In string theory, gluons can be “discovered” by
tying open string ends to a D-brane in the IR,
and using the kinematics (large s and i) to force the
string to stretch deep into the UV. Alday, Maldacena
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Dimensional Regulation in the IR

One-loop IR divergences are of two types:

dw dw 1
Soft /o: T Jowlte T ¢

D 4 — ¢

e <0

Collinear (with respect to massless emitting line)
/ dkT / dkT 1
> X —
0 kp 0 ]g%:'_e €

Overlapping soft + collinear divergences
imply leading pole is I loop

€2
1
2L

at L loops
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IR Structure in QCD and N=4 SYM

- Pole terms in ¢ are predictable due to
soft/collinear factorization and exponentiation

— long-studied in QCD, straightforwardly applicable to
N=4 SYM

Akhoury (1979); Mueller (1979); Collins (1980); Sen (1981); Sterman (1987);
Botts, Sterman (1989); Catani, Trentadue (1989); Korchemsky (1989)
Magnea, Sterman (1990) ; Korchemsky, Marchesini, hep-ph/9210281
Catani, hep-ph/9802439 ; Sterman, Tejeda-Yeomans, hep-ph/0210130

In the planar limit, for both QCD and N=4 SYM,
pole terms are given in terms of:

- the beta function B(A) [=0in N=4 SYM ]
- the cusp (or soft) anomalous dimension  vx ()

 a “collinear” anomalous dimension Go(N)
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Cusp anomalous dimension

p2=n-n*

VEV of Wilson line with kink or cusp in it obeys
renormalization group equation:

(pa% + B(g)a%) INW(p,g) = =27k (g) Inp* + O(p°)

Polyakov (1980); lvanov, Korchemsky, Radyushkin (1986); Korchemsky, Radyushkin (1987)

Cusp (soft) anomalous dimension & (g) also controls

large-spin limit of anomalous dimensions 77

of leading-twist operators with spin j: g(vTD1)q
1 ' 0 Korchemsky (1989);

Vi = EVK(Q) Inj + O@G") Korchemsky, Marchesini (1993)

Related by Mellin transformto £ — 1  limit of DGLAP kernel for

1 .
evolving parton distribution functions Vi = — fo dz 2t Paa()

_ 1 vx(g) B = important for soft 2 &
Faalr) = 2(1 —x)4 +Ble) 61— =) + gluon resummations :—C,
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Soft/Collinear Factorization

Magnea, Sterman (1990)
Sterman, Tejeda-Yeomans,
hep-ph/0210130

MTL — S(ku oy OéS(M)v 6) X [ H JZ(M? 058(“)) 6)} X hn(k@a s QS(M)a 6)
=1

« S = soft function (only depends on color of i" particle)

« J = jet function (color-diagonal; depends on " spin)

» h.= hard remainder function (finite as ¢ — 0 )

L. Dixon Higher Loops in N=4 SYM DESY 28 Sept. 2007 9



Simplification at Large N_(Planar Case)

coefficient of Tr[T%1 ... T%]

« Soft function only defined up to a multiple of the identity matrix
In color space

* Planar limit is color-trivial; can absorb Sinto J,

o If all n particles are identical, say gluons, then each “wedge” is
the square root of the “gg = 1” process (Sudakov form factor):

n . 1/2
M, = |:./V( [g9—1] (%,Hl , g, F>:| X N, (k:i? [, . E)
i=1

2
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Sudakov form factor

 Factorization - differential equation for form factor

Mueller (1979); Collins (1980); Sen (1981); Korchemsky, Radyushkin (1987);

Korchemsky (1989); Magnea, Sterman (1990)

0

01n Q2
1

MU= Q2 /112 as(p), €)

2 X

= Z[K (e, as) + G(Q% /17, as(p), )| x MYI=H(Q2 /1%, as(1), )

finite as £ > 0, contains all Q¥ dependence

Pure counterterm (series of 1/ poles);
like f(& ), single poles in £ determine K completely

K, G also obey differential equations (ren. group):

/
(154 B ) K +G) =0 (g + 87 )K = —ca)
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General amplitude in planar N=4 SYM

* Solve differential equations for K, G. Easy because coupling doesn’t run.
* Insert result for Sudakov form factor into n-point amplitude

RO O
= M. = 1+Z Fu = expl— Z G5 +2) 3 () e

i=1 — Sii+1
. \ T~ —
loop expansion parameter: : ,
Noa \ looks like the one-loop amplitude,
a= CWS(47re‘“”)E = @(4%_7)6 but with £ shifted to (/ ), up to finite terms

50 g are I-loop coefficients of 5 (a), Go(a)

Rewrite as  Aq, = exp{z (f(l)(e)M( )(le) + Ay, )(e S; 14_1))
=1

FO) = /o 0 4 fi O 4 2 f5 () collects 3 series of constants:

1
f(l) =7 %) f(l) _ (l) f(l) = (?777)
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Exponentiation in planar N=4 SYM

 For planar N=4 SYM, propose that the finite terms also exponentiate.
That is, the hard remainder function h /) defined by

My = exp[ > a(FOOMEYUe) + 1 (e, 51,41))
=1

. . . Anastasiou, Bern, LD,
is also a series of constants, C [for MHV amplitudes]:| «ocower. hep-th0309040:

0 - Cachazo, Spradlin,
My = exp| Y d (f(l)(e)Mgl)(ze) + oM 4 0(e))] Volovich, hep-th/0602228;

I—1 Bern, Czakon, Kosower,
:,\ 1 S - Roiban, Smirnov,
M4|finite — eXD[éWK(@) In2(¥> + const. hep-th/0604074

Evidence based on two loops (n=4,5, plus collinear limits)
and three loops (for n=4) Bern, LD, Smirnov, hep-th/0505205
and now strong coupling (n=4,5 only?)  Alday, Maldacena, 0705.0303 [hep-th]

In contrast, for QCD, and non-planar N=4 SYM, two-loop amplitudes have
been computed, and hard remainders are a mess of polylogarithms in /s
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Evidence: from amplitudes computed
via perturbative unitarity

Expand scattering matrix 7
in coupling

Insert expansion into unitarity relation

2ImT =TT

Find representations of amplitudes
in terms of different loop integrals,
matching all the cuts

Very efficient — especially for N=4
SYM — due to simple structure of
tree helicity amplitudes, plus
manifest N=4 SUSY

Bern, LD, Dunbar, Kosower (1994);
Dunbar, this workshop
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Generalized unitarity

If one cut is good, surely more must be better
RHYMES WITH ORANGE Hilary B. Price

i | /"CEE, THE FIRST BLADE LIFETS
- e THE WHEAT SHAFT, WHICH
HARVEST i & : ALLOWS THE SECOND BLADE
TIME ||~ | TO CUT CLOSE, THEN THE
% - = \ THIRD BLADE GINES (T A
7 smoom MANLW EINISH o
e i A TN -*,?W%
L“ I".}J 3 t Lx‘l- FFQE‘:T: W, N 3
Multiple cut conditions connected with leading singularities
Eden, Landshoff, Olive, Polkinghorne (1966)
+ f - +
3 4 4
At one loop, efficiently extract coefficients of triangle ; f/
integrals & especially box integrals from products of trees fo-1t | {5
Bern, LD, Kosower (1997); Britto, Cachazo, Feng (2004) 2’+ | "\ o
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Generalized unitarity at multi-loop level

Bern, LD, Kosower (2000); BCDKS (2006); BCJK (2007)

In matching loop-integral representations of amplitudes with
the cuts, it is convenient to work with tree amplitudes only.

For example, at 3 loops, one encounters the product of a
S-point tree and a 5-point one-loop amplitude:

i Cut 5-point loop amplitude further,
| into (4-point tree) x (5-point tree),
! in all inequivalent ways:

W
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The rung rule

Many higher-loop contributions to gg = gg scattering

deduced from a simple property of the 2-particle cuts
at one loop Bern, Rozowsky, Yan (1997)

9 3 : ’
Z — 1 512523 . j:
N=4

1 ! 1

1
Leads to “rung rule” for easily computing all contributions
which can be built by iterating 2-particle cuts

U)e0e —p—— soe ) see —p—
— il + L)’
U see —p— soe U] eee —p—
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Planar amplitudes from 1 to 3 loops

N=4 planar
2 3
. Green, Schwarz,
= S, S, Brink (1982)
1 4
N=4 planar
2 3
1 4 Bern, Rozowsky,
N=4 planar - Yan (1997)
2 3
1 4
) _
2 2 A
+ 2s,,(I+k I+k,)" '
Sa(l*k) + 28, (k) all follow from
I N 1 i rung rule
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Integrals for planar amplitude at 4 loops

Bern, Czakon, LD, Kosower, Smirnov, hep-th/0610248
rung-rule diagrams

2 3
S3 r Us+ ]10)4 ™ 52(]1"’_ -}'5)2 ST
1 4 >
(a) (b) ©)
2 g . 242 4
s sen) | Ll s (1+ 1)’
X (.712—1— ]13) 1 x (Ig+ 1) ¢
(d) (e) (f)
. 2 3
non-rung-rule diagrams,
no 2-particle cuts S st
1 4
(dz) (fz)
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Integrals for planar amplitude at 5 loops

. . Bern, Carrasco, Johansson, Kosower, 0705.1864][th]
only cubic vertices (22)

kea k3

5.
Gy 43 .4 6, g3 1 1
4,2 4.2 St st'gg I |
¢ stta a7 A st ‘lh'.l | | | O
5
I'l 4l
4| A (T5)
(- U ) (‘14)
L) 3
ky (Ii) ks k ks
2, B . 3 3
| | 3 : s, s, .
206 |5 % 2,2 4 - 3.2 .2 |6 |13, LRI - —st?r? —s242,2 _st? —st242,
o322 A s7tahs [ Rt s Y I 3, st For A . stirig i [ st™rig s a3 st L
SLarlay - | o —]%
I O 3 4
k k
1 T 1, . 1, ' ( N In) ({25) I
T - ({23) {2 25 (126)
(Is) (77) (Is) o) (110)
% % P
o
La s ) I L5 Lo 5 5 3
2y2 2 o2 LT, 2.2 2 o |17, ) 2 9 2 | 0, 2 4 || J- TS _2,2 |8 3 e | 222 % |
ST Ty . * ST, 0507 N st?rs-ai-ais | N s°trig Ty | \ it A st | . stugr | f1, [ 18, —st' a1 | * |
. p— * — ‘s —1" ! —"e .
(Iy) T T (1) (Ir) (Ins) (Is) (In)
t (112) (113) 14
2‘
o 3 6 3 %
L5} K .
204 02 |15 W 14 2.4 02 |5 3, 5, 9 o *° 9, .9 9 ‘—1° ) 1 6
SRl R I 87550 | I R S % sPtadgnds |5, o * . N
I 0 —strgad 2 5%t —staiy st?
. 4" ; \ * ( 3 :
(115) (116) (I17) (f1s) L ‘ ‘
2 (Is1) (Ia2) (Za3) (Ia1)
6, G, 5 6
A
24002 .2 .2 |5 3 2522 2.2 .2 |5, 3, o122 2 .2 9,0 9
st Tty [+ 7, L STrEs T TE | 2 | o, |t ST a5, A ’ —s*ttadynd
“e L] <
E] 1, 1,
({19) (£20) (La1)
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Subleading in 1/N, terms

 Additional non-planar integrals are required
» Coefficients are known through 3 loops:

2 3
2 loops ¢ X Bern, Rozowsky, Yan (1997)
/

1 -+

3 |OOpS Bern, Carrasco, LD, Johansson, Kosower, Roiban, hep-th/0702112

2 3 2 k&
7 2 >~
s’ X 2\ : s(LHLY+ el +4) ny Vs e
1 \4 2 2 2 7
s(1+ k) —s 2 =112 51 d
2 3 < 17 s
2 7 1 4
§ X D 3
1 4 2 3

s(LALY =t (L+4)Y 0

1
; sy | f Y 2
’ 1 pY! :
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Patterns in the planar case

- At four loops, if we assume there are no triangle sub-diagrams,
then besides the 8 contributing rung-rule & non-rung-rule diagrams,
there are over a dozen additional possible integral topologies:

Ralizas A I8

(bz) (bg) (b4) (Cl) (dl)

DL A A e A A

(g) (dy) (dy) (ds) () (e,) (e3)

[ /é\\

(e,) (ey) (c) g,

« Why do none of these topologies appear?
« What distinguishes them from the ones that do appear?
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Surviving diagrams all have

“dual conformal invariance”

« Although amplitude is evaluated in D=4-2¢,
all non-contributing no-triangle diagrams can be eliminated
by requiring D=4 “dual conformal invariance” and finiteness.

- Take k7 # 0 to regulate integrals in D=4. u o, T
- Require inversion symmetry on dual variables ' : [ ¢ 22
Lipatov (2d) (1999); Drummond, Henn, Smirnov, Sokatchev, hep-th/0607160
. 2 _ k:2
* No explicit 565'_1,7; = K Two-loop example
aIIowed2 (so k7 — 0 OK) ki = 41 ) X
xr<. d4 . — / k
5’3% — 5, d*z; — ;UZ w2 = ’ /\ ’
ity i k3 = x23 .
. ! X1 < : >x X3
Requires 4 (net) lines out ka = 134 Xs\ | /e
of every internal dual vertex, — '-,
1 (net) line out of every P 45 kl \x/ k4
external one. 9= T65 4
Dotted lines = numerator factors numerator: 3322 = (k1 + k2)2 — g
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Dual diagrams at four loops

Present in the amplitude

e
1 h“lv’i" ,

(@)

I
SN
Y

Not present:
Requires 23, = k7 = 0 on shell

2

Z ,,A\

L. Dixon

« 2 diagrams possess dual
conformal.invariance and a
smooth k2 — 0 limit, yet are
not present in the amplitude.

 But they are not finite in D=4

A Drummond,
_,,%ﬁ%\ Korchemsky,

hd Sokatchev,

v 0707.0243[th]

Higher Loops in N=4 SYM
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Dual conformal invariance at five loops

Bern, Carrasco, Johansson, Kosower, 0705.1864[th]

59 diagrams possess dual conformal invariance
and a smooth on-shell limit ( x&? — 0)

Only 34 are present in the amplitude

. .. Drummond, Korchemsky,
The other 25 are not finite in D=4 | sokatchev, 0707.0243[th]

* Through 5 loops, only finite dual conformal integrals
enter the planar amplitude.
« All such integrals do so with weight =1 .

lt's a pity, but there does not (yet) seem to be a good notion of
dual conformal invariance for nonplanar integrals...
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Back to exponentiation: the 3 loop case

* L-loop formula: [y, — exp[z ol (f(l)(e)Mf,gl)(le) +c® 4 O(e))
=1

implies 1 3
at 3 loops: MiP () = _§{MT(L1)(E)] + M (M () + FO (M5 (30)

+ 3+ 0()

« To check exponentiation at ©(<°) for n=4, need to evaluate just 4 integrals:

| | <— Smirnov, hep-ph/0305142

y ™S 11 10111
______ . .
0’ €97 4 37 2 € Use Mellin-Barnes
e . .
integration method
Y

1111 5 o

647 637 627 67 Y Y

1 1

= &V, € €2, e, &* elementary

€ €
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Exponentiation at 3 loops (cont.)

* Inserting the values of the integrals (including those with s < t) into

1 3
MP(©) = —Z[MPEO] + M OMP () + FD(OMP G
+ c® + B (o)
using harmonic polylogarithm identities, etc., BDS, hep-th/0505205

relation was verified, and constants extracted:

FOMES =% f§3)=6<5+5<2<3 53 = c1¢6 + a3

341
c® = 7-|-—1C6-|- ——-I——CQ 2 e
(216 ) ( ) | n-point information stil
required to separate

Confirmed result for 3-loop cusp anomalous dimension from maximum transcendentality
Kotikov, Lipatov, Onishchenko, Velizhanin, hep-th/0404092
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Four-loop anomalous dimensions

MP© = S [MPO) - [MP O MP ) + P OMP ) + 5 [MP O]

4
i”(4e) + ¢ 4+ 0()

. vﬁf)(/\) and 984)@) can be extracted from 7/&2and 1/«
coefficients in four-loop amplitude.

 Also need lower-loop integrals.  For vﬁf)(/\) only to
same order that they were already evaluated analytically
for the £° coefficient of the three-loop amplitude

 Four-loop integrals evaluated semi-numerically, using
computer programs which automate extraction of 1/¢ poles from
Mellin-Barnes integrals, and set up numerical integration over

the multiple inversion contours. (Collider physics technology!)
Anastasiou, Daleo, hep-ph/0511176; Czakon, hep-ph/0511200;
AMBRE [Gluza, Kajda, Riemann], 0704.2423[ph]
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Four-loop cusp anomalous dimension

BCDKS, hep-th/0610248

- Workingat s =t = —1, wefound |f* = —29.335 +0.052
« Existing prediction based on integrability (with no dressing factor) was:
S J

" Beisert, this workshop

« Assuming discrepancy to be of

| . | 167 = 16")es + 73
“leading transcendentality”, can write:

r = —2.028 = 0.036

—2 flipped the sign of the £;? term in the ES prediction,
leaving the 7° term alone

T =

* Later, precision on rimproved significantly to:
r = —2.00002 £ 0.00003

Cachazo, Spradlin, Volovich, hep-th/0612309
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Weak/strong-coupling interpolation

 Kotikov, Lipatov and Velizhanin (KLV), hep-ph/0301021
proposed the formula:

2n
" — Z C-r [f()(d)]r - j\rﬁ g L )\
r=—n 27-(- 87-(-2
to interpolate between fo ~ a atweak coupling
and fo ~ Va atstrong coupling.

Strong-coupling prediction from AdS/CFT (energy of spinning
folded string): p 311 2 |
Jo = \/; — - + O™

47

Gubser Klebanov, Polyakov, / X
hep-th/0204051 Frolov, Tseytlin, hep-th/0204226

More recently, Roiban, Tseytlin, 0709.0681[th] computed a_l/Q term
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Interpolation (cont.)

Using 4 weak-coupling coefficients, plus [0,1,2] strong-coupling
coefficients gave very consistent results:

Approximate Cusp Anomalous Dimension in Planar MSYM
— ERERE T These curves
20l = predict the
I ’ five-loop
- - coefficient:
15— _
: 1 #89 = 167.03
I 1 166.34
- Lol ] 165.25
I il ES predicted 131.22
- T — but flipping signs
05— _
B ,-/ 4—loop approx, r= —2 _ Of Odd-Zeta terms
- /_../ _ | 1 | gives 165.65 !
W, + leading and subleading large—a coeffs. ————
a .
GO / | 1 | | | | | | 1 | | | | 1 | | 1 1 | |
0 2 4 6 8 10

a
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Independently...

At the same time as BCDKS, Beisert, Eden, Staudacher
lhep-th/0610251] were investigating strong-coupling properties of

the dressing factor

Arutyunov, Frolov, Staudacher, hep-th/0406256;
Hernandez, Lépez, hep-th/0603204; ...

« BES were led to propose a new integral equation,
whose only effect at weak coupling was to
flip signs of odd-zeta terms in the ES prediction

(actually, ¢o, s =2 7 Coksr )

— in precise agreement with our simultaneous
4-loop calculation and 5-loop estimate

L. Dixon Higher Loops in N=4 SYM
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Soon thereafter ...

Cusp Anomalous Dimension in Planar MSYM

Benna, Benvenulti, T
Klebanov, Scardicchio
[hep-th/0611135] I
solved BES integral -
equation numerically,
expanding in a basis of -
Bessel functions.
Solution agrees -
stunningly well with L
“pest KLV interpolation” -

0o
[
|

— to within 0.2% for all a I e

Very recently, full S
strong-coupling I
expansion given by fo(a) /

4—loop KLV approx, r= —2

+ leading and subleading large—a coeffs
BEEKS numerical solution for BES kernel

Basso, Korchemsky, 0.0
Kotanski, 0708.3933[th]

L. Dixon Higher Loops in N=4 SYM
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Pinning down Go(A)

Cachazo, Spradlin, Volovich, 0707.1903 [hep-th]

« CSV recently computed the four-loop coefficient numerically
by expanding the same integrals to one higher power in &

>\ 7 2 )\ 3 )\ 4
Go(A) = —(3 (@> + 5(6C5 + 5¢2(3) (@> — (77.69+£0.06) (@> + .-
» They also compared this number to the prediction of strong coupling
. . . . from Alday,
a KLV-type approximation interpolating between Maldacena
weak and strong coupling: -83.55 l
The two results agree to within 7%.

0.25¢

0.2¢

And they gave a [3/2] Padé | Go()\) o
approximant for Go(A)

—>

incorporating all data

2/ (1672)
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Dual variables and strong coupling

e T-dual variables y* introduced by Alday, Maldacena

« Boundary values for world-sheet
are light-like segments in y* :

Ayt = 27kt for gluon with momentum EH
« For example, L

for gg > gg 90-degree scattering, 2 v
S =t = -u/2, the boundary looks like:

Corners (cusps) are located at a:f
— same dual momentum variables
introduced above for discussing Y,
dual conformal invariance of integrals!! T
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Cusps in the solution

» Near each corner, solution has a cusp

Kruczenski, hep-th/0210115

r=\Q+903 - v =@+ IyTy oy

» Classical action
divergence is regulated by ¢

R2
, 2 r=-z
1S = —Sgp = —%fdadT
i+1 i
e —RQ/ dyTdy ~ —Q ~ _ (M)
0 (y—|—y—>1—|—e/2 €2 2 &

« Cusp in (y,n is the strong-coupling limit of the
red wedge; i.e. the Sudakov form factor.
e« See also  Buchbinder, 0706.2015 [hep-th]

g
S i’ S~
- o &09
&
) ) .
- S @,
m F
e, Q
2, Q
2, Q
>, Q)
4] S
%.l““ >,
@,
',

0000000000
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The full solution

- Divergences only come from corners; /9@y Maldacena 0705.0303 [hep-h]

can set D=4 in interior.
 Evaluating the action as £ —> 0 gives:

Ag = exp(=5g) . () Go(M) |
/ !
1vVA 1V N4 (P
_SE (—G—QE — ZE(]- —In 2)) [(%) + (/i_t) }
JX .
tanl0 O

combination of fo(\) & C'(\)
() x Mg (s, 1)
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Dual variables and Wilson lines
at weak coupling

* Inspired by Alday, Maldacena, there has been a sequence of
recent computations of Wilson-line configurations with same
“dual momentum” boundary conditions:

* One loop, n=4 Drummond, Korchemsky, Sokatchev, 0707.0243[th]
« One loop, any n Brandhuber, Heslop, Travaglini, 0707.1153[th]

ks

ka

P3

ks b7

p=p2
k1

ey D1 oo

P1
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Dual variables and Wilson lines
at weak coupling (cont.)

Drummond, Henn, Korchemsky,

* Two loops, n=4
PS; Sokatchev, 0709.2368[th]
x5
wﬁb * In all 3 cases, Wilson-line results
match the full scattering amplitude

+ [the MHV case for n>5] 17!
""" —upto an additive constant in

the 2-loop case.

0 0
Ly x3

DHKS also remark that the one-loop MHV N=4 SYM amplitudes
obey an “anomalous” (due to IR divergences) dual conformal Ward
identity they propose, which totally fixes their structure for n=4,5.
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Non-MHYV very different even at 1 loop

MHV:
ALTIooP — ptree = A, = Al'®explal]
/
power law logarithmic
(i g)?
(12)(23)--(n1)
Non-MHV: 27
A%J_IOOD =>,;1;L; = Ap = > i1 eXD[CLLZ']

ALee =30, T,
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Conclusions & Open Questions

* Through a number of approaches, especially
iIntegrability, an exact solution for the cusp anomalous
dimension in planar N=4 SYM certainly seems in hand.

* Remarkably, finite terms in MHV planar N=4 SYM
amplitudes exponentiate in a very similar way to the IR
divergences. Full amplitude seems to depend on just 4
functions of A alone, so MHV problem may be at least
“1/4” solved! [Pending resolution, for n > 5, of issue
raised by Alday, Maldacenal]

« What is the AdS/operator interpretation of the other 3
functions? Can one find integral equations for them?

* How is exponentiation/iteration related to AdS/CFT,
integrability, [dual] conformality, and Wilson lines?

« What happens for non-MHV amplitudes? From
structure of 1-loop amplitudes, answer must be more
complex.
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Two-loop exponentiation & collinear limits

» Evidence for n>4: Use limits as 2 momenta become collinear:
ka — zkp

kb — (1 — Z)kp

» Tree amplitude behavior:

a P a
’Ib i .:b

© MO SplitO(Ap, Ag, Ap)

* One-loop behavior: c? ; ;
b ———

« Two-loop behavior: #
@
g #@; Split
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Two-loop splitting amplitude iteration

» In N=4 SYM, all helicity configurations are equivalent, can write

Sp“t(l)(AP7 Aay )‘b) — rgl) (Zv Sab» 6) X Sp“t(O)(Apa Aa, Ab)

 The two-loop splitting amplitude obeys: Anastasiou, Bern,
LD, Kosower,
1 2 ]
ng)(e) — E{Tgl)(e)} + f(Q)(G)T‘gl)(QE) + O(G) hep th/0309040

which is consistent with the n-point amplitude ansatz
MP(e) = %[Mé”(df + 1@ MV (20) + 0@ + B (o)

andfixes (2 _ . ;@ __o D _ ¢ @ _ (&)

— °

n-point information required to separate these two

Note: by definition fél) =1, f%l) = fél) =c) = Egl)(e) =0
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Two-loop check for n=5

Collinear limits are highly , but not quite a proof.

Using unitarity, first in D=4, later in D=4-2¢,
the two-loop n=5 amplitude was found to be:

5
5 1 5 1

) o 2 2 3 ' Bern, Rozowsky,
St Sz t S Ss t SuSuSi(q-k,) ¢ Yan, hep-ph/9706392
3 2 43 2 2
5 . : 1
Siz d N d++
+ R [834345 (_ 851 + 323 )
3 2 43 2
’ 1 8 1 ° 1
d.. q o
+ 5 (9- k,) + 2 - 25,4 }
23 51 ) A ! ) )
+ cyclic 3 3
R = e(kq, ko, ks, ka) ) kacrj]d odd terlrlns
numerl
X $12823534545551/ det(si;)]ij=1,2,34 checxed numernically g

Czakon
Bern, Czakon, Kosower, Roiban, Smirnov, hep-th/0604074 with aid of -ph/051 1200
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Generalized cuts computed at 4 loops

00

8 |

(vi)

(2)

(11)
Graph detection table
M crapn Cuts ||G1‘aph Cuts  [|Graph| Cuts
(a) (i) (ii), (iii) (br) | (v), (vi) || (ds) (D). (iii), (iv)
(b) (i), (v) (bo) | (). (vi) || (er) (). (iii), (iv)
p (¢) (), (i), (i), ()| (bg) [ (v), (vi) | (ez) | (i), (iv)
(d) (i), (iii), (v) (bs) (vi) (es) | (i), (vi)
(e) (1), (i), (iv), (vi)|f (e1) [(@). (i), (iv)f (ea) [ (i), (vi)
(£) | (i), (dv), (vi) [ (da) |(0), (iii), (iv))f (es) |(i). (iii), (iv)
(d2) (iii), (iv) (ds) (1), (iii), (iv)]| (es) (vi)
(f2) (iif), (vi) (da) (), (iid), (v)|| [() || (D)[(vD)
(g1) | (i), (vi)
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lteration in other theories?

Khoze, hep-th/0512194

Two classes of (large N_) conformal gauge theories “inherit”
the same large N, perturbative amplitude properties from N=4 SYM:

1. Theories obtained by orbifold projection
— product groups, matter in particular bi-fundamental rep’s

Bershadsky, Johansen, hep-th/9803249

2. The N=1 supersymmetric “beta-deformed” conformal theory
— same field content as N=4 SYM, but superpotential is modified:

g Tr(P1 PPy — O D3Dy) — g Tr PR Dode — e TPRP, D P Leigh, Strassler,
g Tr(P1Pa Py 1P3P2) — 2 1x( 192D 1P3P7) hep-th/9503121

Supergravity dual known for this case, deformation of AdS, x S°
Lunin, Maldacena, hep-th/0502086

Breakdown of inheritance at five loops (!?) for more general
marginal perturbations of N=4 SYM? Khoze, hep-th/0512194
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Cusp anomalous dimension in QCD

Moch Vermaseren, Vogt (MVV),
Computed through 3 loops: hep-ph/0403192, hep-ph/0404111

K (os) = vg)@—;) + WQ)(%) + 7(3)<27T> + -

W = a0 1

67 | 5
”y%) 4C; K— - Cz) Ca — —’ﬂf}

Vg) = 46’@[(% — —Cz + —Cs—l-—CQ) o
208 00
+ <_ﬁ + —CQ — —C3) ZA”@f Cn = Z k:i
n k=1
+ (—2—4 N 2C3) Crng = 2—;} C; = C 4 (gluons)

C; =Cp (quarks)
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“Leading transcendentality” relation
between QCD and N=4 SYM

« KLOV (Kotikov, Lipatov, Onishschenko, Velizhanin, hep-th/0404092)
noticed (at 2 loops) a remarkable relation between kernels for
« BFKL evolution (strong rapidity ordering)
* DGLAP evolution (pdf evolution = strong collinear ordering)
-> includes cusp anomalous dimension

in QCD and N=4 SYM:

» Set fermionic color factor Cr = C,in the QCD result and

keep only the “leading transcendentality” terms. They coincide
with the full N=4 SYM result (even though theories differ by scalars)
» Conversely, N=4 SYM results predict pieces of the QCD result

* transcendentality (weight): n for ="
n for C,
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Similar counting for HPLs and
for related harmonic sums

used to describe DGLAP kernels
at finite j
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vk (@s) IN N=4 SYM through 3 loops:

(1) — A . (8% A
b e ‘CA(QS) — 82
(2) - v2 £ 7T S
T~ — 4614 (—¢2)

¥2

11
4(’73 (gg“%) <— KLOV prediction

» Finite J predictions confirmed (with assumption of integrability)
Staudacher, hep-th/0412188

« Confirmed at infinite j using on-shell amplitudes, unitarity
Bern, LD, Smirnov, hep-th/0505205

 and with all-orders asymptotic Bethe ansatz
Beisert, Staudacher, hep-th/0504190

* leading to an integral equation Eden, Staudacher, hep-th/0603157
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