

Bundesministerium für Bildung und Forschung

Overview: SiPM+WOM-based liquid-scintillator detector (WP 2.1)

4. High-D Consortium Meeting

- Particle identification + measurement
 - 3D information
 - Energy
 - Time
- Detector granularity
 - "High" segmentation
 - Electronic development
- Particle reconstruction
 - New algorithms
 - Incorporate detector segments

Motivation: Search for Hidden Particles (SHiP)

- Proposed Beam Dump Facility @ CERN SPS ECN3: SHiP
- Dedicated search for Feebly interacting particles (FIPs)
- 400 GeV p dumped in high-density target
- Magnets deflect μ out of beam line
- Scattering and Neutrino Detector (SND) light dark matter search and ν_τ physics
- Hidden sector decay volume = vacuum vessel
- Spectrometer reconstructs decay (tracker/calorimeter/timing)

SHiP Background Sources

- Possible μ/ν scattering in material upstream of decay vessel or cavern/vessel walls
- Scattered particles in coincidence could mimic signal
- Aim: detect particles entering through decay volume walls
- Solution: instrument decay volume walls with Surrounding Background Tagger (SBT)
- Need > 99% efficiency for tagging MIPs with E_{dep} > 45 MeV

4. High-D Consortium Meeting

Surrounding Background Tagger (SBT)

- Requirements:
 - Large-scale $ightarrow {\cal O}(150)$ m³ with \sim 900 cells
 - Resolution \rightarrow space + time + energy
 - Low cost (corten steel, sparse readout)
- Solution: Liquid Scintillator (LS) detector with Wavelength-shifting Optical Module (WOM) readout

SBT Cell Principle

Liquid Scintillator

- Solvent: Linear alkylbenzene (LAB)
- Fluor: 2,5-diphenyl-oxazole (PPO)
- Spectra
 - LS (LAB + 2 g/L PPO) emission: 350-380 nm
 - WLS emission: 420 nm
 - SiPM max quantum efficiency: 400-520 nm

WOMs

- Cylinder of PMMA
- Wavelength-shifting coating
 - UV absorption
 - Isotropic blue light emission
- Transparent tube catches light
 - Total internal reflection
- Advantages:
 - Large surface area
 - Up to 75% collection efficiency
- IceCube: [10.3390/s22041385]

Electronics

- SiPMs (Hamamatsu S14160-3050HS)
 - $3 \times 3 \text{ mm}^2$ area
 - Peak sensitivity in 400-500 nm range
- Testbeam readout + DAQ
 - PCBs developed in Freiburg
 - eMusic ASIC amplifies + shapes signal
 - WaveCatcher digitiser

R&D Overview: 1 Cell Testbeam

- PCBs developed (Freiburg)
- WOM housing designed (Jülich)
- Purified LS (Mainz)
- Reflective coating on inner cell walls (Mainz)
- Objective: Test full-scale SBT cell
 - Identify required LS thickness
 - Evaluate efficiency, timing performance

Full Geant4 Simulation of 1 Cell

- Includes measurable material quantities
 - Absorption lengths
 - Emission spectra
 - Reflectivities
 - Indices of refraction
- Simulates full event from beam \rightarrow SiPM detection
 - EM shower
 - Scintillation, Cerenkov processes
 - Optical photon transportation
 - No electronics
- Extractable quantities
 - # of detected photons in each SiPM (group)
 - Energy deposit in cell
 - Photon arrival time at SiPM

1 Cell at DESY e^+ Testbeam: October 2022

- e^+ beam (2 mm diameter)
- Energy = 1.4 5.4 GeV
- 10000 events/run
- Beam telescope: 4 plastic scintillators with PMTs
- Trigger \rightarrow beam telescope coincidence
- LS cell on x y movable stand, rotating platform around y

Data Spectra at Different Cell Locations

- Signals visible for all positions including corners
- \sim 30% variation in mean charge from centre point to corner
- Expected behaviour wrt beam energy and position

Efficiency

- Efficiency = accepted events/total events > 99.5%
- Goal achieved
- Mean (most probable) $E_{dep} = 113$ (50) MeV from simulation

Integrated Yield Dependence on Beam Angle

Data Comparison to Geant4 Simulation: 65% Reflectivity

No gain measurement, can scale simulation - nice agreement

65% of measured reflectivity used for training reconstruction

Data Uniformity Correction

particle crossing point reconstruction

Signal nonuniformities corrected to reference yield at (0, 0)

Timing Resolution

- Particle arrival time at the detector $\overline{T}_{ud} = (T_u^{corr} + T_d^{corr})/2$ where $T_{u,d}^{corr}$ are obtained by subtracting the trigger time
- Timing resolution of ± 1 ns

Particle Crossing Point Reconstruction (0°, 1.4 GeV) with NN

4. High-D Consortium Meeting

1 Cell Testbeam Summary

- Successful DESY e⁻ testbeam
- > 99.5% efficiency achieved
- Detector response as expected wrt beam energy/position/angle
- Timing resolution ± 1 ns

- NN-based spatial reconstruction with ${\rm RMS}$ < 14 cm
- Reflective coating sub-optimal, rust spots on corten steel \rightarrow Patrick Deucher
- LS thickness can be reduced to 20 cm
- [arXiv:2311.07340]
- Cell in Freiburg for long-term stability (cosmic) measurements

R&D Overview: 4 Cell Prototype

- Test full-scale multi-cell configuration
- 20 cm of LS
- New WOMs produced
- Slow control
 - Pressure sensor for LS
 - Tilt sensor
 - Thermometer
 - 2x laser rangefinder
- Reflective coating better
- MC Simulation
- Liquid handling to be tested

Support Structure

- 6 m x 2.4 m
- 7t filled
- Translation in x and y
- Rotation around \boldsymbol{x} and \boldsymbol{y}

4 Cells at CERN μ^- Testbeam: October 2023

- μ^- beam ($\sigma_{beam} = 13$ mm)
- Energy \approx 5 GeV
- Trigger on beam telescope
 + scintillator behind detector

Preliminary: Integrated Yield at $\theta_x = 0^\circ$, $\theta_y = 0^\circ$

- Possible sources of variations: different dimensions, electronics, optical coupling per cell
- 1/3 1/2 of e^+ yields (no shower, less LS)

Preliminary: Integrated Yield at $\theta_x = 0^\circ$, $\theta_y = 90^\circ$

- Signals higher in C than D for similar tracks
- Further study required
- Results similar to previous testbeam, as expected

Ongoing R&D

- Testbeam data analysis
- WOM production
- Readout PCBs
- Material compatibility, optimisation
- Simulation, timing \rightarrow Alessia Brignoli

Next Testbeam

March/April 2024 @ CERN

Next Prototype

First 3 ring sections of SBT (42 cells)

Data Uniformity Correction: Probability Density Distributions

- Yield fraction per WOM and channel determined for each particle crossing point
- Probability density distributions used for reconstruction and correction of each event

4. High-D Consortium Meeting