First prototype muon test beam measurements

Lea Baumgartner, Alessia Brignoli, Valery Dormenev, Christian Dreisbach, Karl Eichhorn, Jan Friedrich, Martin J. Losekamm, Heiko Markus Lacker, Anupama Reghunath, Christian Scharf, Ben Skodda, Valerian v. Nicolai, Hans-Georg Zaunick

Valerian v. Nicolai, Bachelor's student

Technical University of Munich

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Overview

- Setup at CERN
- Measurements
- Analysis

Setup at CERN

 Beam Dump Test Stand of the AMBER experiment; September 2023

- Part of setup identical to Ida's: scintillator & preamplifiers
- Fixed to a 2D moving table, supplied by U Gießen

Setup at CERN – Silicon telescope & Trigger

- Tracking telescope: 16 planes of silicon microstrip detectors, four stations
- Two stations upstream of detector, two downstream
- Tracker: (5×7) cm² active area
- Resolution: $20 \ \mu m$ (only 0(mm) for the alignment of the prototype)
- Trigger: single plastic scintillator (BC408), size: $(5 \times 7) \text{ cm}^2$; readout by one PM tube

Setup at CERN: Trigger and DAQ

- ADC: MSADCs developed for COMPASS
- Amplitude resolution: 12 bit
 - DAQ: standalone version of the COMPASS DAQ

Analysis – Processing

- Data processed and aligned by colleagues in Munich
- Content: track information in x and y, waveforms with 32 samples (bin size: 12.5 ns)
 - Kept data with the following parameters:
 - Number of hits in tracking telescope planes: more than 8 (out of 16)
 - Number of tracks per event: exactly 1
 - χ^2 of the track reconstruction: smaller than 30

Analysis – Integrals

- Search for maximum in a specified range
- Integral: sum of waveform samples in a defined interval
- Example waveform in one channel from darkcount measurements, random trigger

Spectrum of Integrals

Measurements – Track positions

Number of tracks

- First set of runs: covering the whole surface of the detector and more (two runs in red)
- Overlap between each run: 2 cm in x and y direction (overlap area shaded)

Measurements – Track positions

Second set of runs: taking more data on seventeen positions

Counts

00 1600 total PE

Track Position X [cm]

Track pos. of all runs with > 250 pe and < 600 pe in total

Track Position X [cm]

Analysis – Integrals

- Keep all events with more than 250 pe and less than 600 pe across the whole detector
 - Aim: remove multiple MIP events

Fibres visible

Outlook – Further Analysis

- Light yield as a function of the position of the detector
- Determine the spatial resolution
 - 2D reconstruction with a weighted mean/Poisson-Likelihood function/analytic fit function
 - Determintation of detector efficiency

First prototype muon test beam measurements

Thank you for listening

 View of the downstream tracking stations

