Characterization of different scintillation materials

Valerii Dormenev II. Physics Institute, Justus-Liebig-University, Giessen, Germany

SPONSORED BY THE

Federal Ministry of Education and Research

Overview

- Organic material polyethylene naphthalate (poly(ethylene 2,6naphthalate) or PEN)
- Study of temperature kinetics dependence of different materials
- Ba-Si-Gd:Ce Glass Scintillation Material

PEN material

We tested a set of PEN samples produced by injection molding in the framework of R&D towards the LEGEND project for the search of neutrinoless double beta decay, samples provided by TUM group:

4 samples with dimensions 40x40x3 mm³ 1 sample with dimensions 50x50x5 mm³

Transmittance measurements were done for 3, 5, 40 and 50 mm light paths Light yield and kinetics were measured for 40x40x3 mm³ sample

Transmittance

Transmittance

Radiation hardness

Sample 5x5x0.5 cm ⁶⁰Co source dose rate = 0.52 Gy/min.

Light Yield measurements

Light Yield vs integration time

Kinetics of scintillation (1)

Kinetics of scintillation was measured by two methods:

1) "Start-stop" method: coincidence between 2 gamma-quanta of ²²Na (511 keV) source. Start detector: BaF2 + UV filter attached to PMT. Stop channel: sample placed on the distance from second PMT. Tektronix MSO66B40 oscilloscope was used to arrange the data acquisition system (DAQ)

 $Fit = 149.6 \cdot e^{\left(\frac{-(x-1.97)}{25.2}\right)} + 16.37 \cdot e^{\left(\frac{-(x-1.97)}{0.83}\right)} + 3.59$

 $\tau_{d1} = 0.83 \text{ ns}, \tau_{d2} = 25.2 \text{ ns}$

Kinetics of scintillation (2)

2) Fit of average pulse from photopeak of the energy spectrum.

Tektronix MSO66B40 oscilloscope was used to arrange the data acquisition system (DAQ)

Na-22 source About 40000 traces from amplitude range [0.8; 1.1] and [40; 60] integral belong to 511 keV photopeak area

Study of different materials

YAG: C	YSO:Ce	YAP:Ce
YAG: C, Ce	LYSO:Ce	LuAP:Ce
YAG:Ce	LYSO:Ce, Ca	
LuAG:Ce	LYSO:Ce, Mg	
LuAG:Pr	LSO:Ce	

Study of different materials

Lutetium-Yttrium-Gadolinium Oxyorthosilicates Y_2SiO_5 : Ce (YSO :Ce) produced by OST (China) $Lu_{2(1-x)}Y_{2x}SiO_5$ (LYSO)LYSO: Ceproduced by OST (China)LYSO: Ce, Caproduced by Taiwan Applied CrystalLYSO: Ce, Mgproduced by Taiwan Applied CrystalLu_2SiO_5: Ce (LSO: Ce) produced by ADVATEC (UK)Lu_{2(1-x)}Gd_{2x}SiO_5: Ce (Fast-LGSO) produced by OXIDE (Japan)

Garnet family: Y₃Al₅O₁₂: Ce (YAG: Ce) Lu₃Al₅O₁₂: Ce (LuAG: Ce) Lu₃Al₅O₁₂: Pr (LuAG: Pr) produced by CRYTUR (Czech Republic)

Gd₃Al₂Ga₃O₁₂: Ce (GAGG: Ce) UltraFast version produced by ADVATECH (UK) Transparent scintillation ceramics (Gd,Lu,Y)₃Al₂Ga₃O₁₂:Ce (GYL)

Transmittance

Sample thickness = 3 mm

Light Yield measurements of oxyorthosilicates

Light yield in photons/MeV, calculated relatively a quantum efficiency value at the luminescence maximum (420 nm)

Light Yield measurements of garnets

Calibrated light yield relatively values at 5000 ns time gate for each temperature

Kinetics vs Temperature

Kinetics fit was done for averaged pulse shapes measured with ¹³⁷Cs gamma-source

YSO:Ce

LSO:Ce

Kinetics vs Temperature

Kinetics fit was done for averaged pulse shapes measured with ¹³⁷Cs gamma-source

Physical properties of different heavy silica glasses

Material	ρ g/cm3	$\mathbf{Z}_{\mathrm{eff}}$	X ₀ cm	λ _{max} nm	Cut-off undoped material / nm
BaO*2SiO ₂	3.7	51	3.6	-	310
DSB: Ce	3.8	51	3.5	440-460	310
BaO*2SiO ₂ :Ce glass heavy loaded with Gd	4.7-5.4(?)	58	2.2	440-460	318

Technology: Typical glass production technology combined with successive thermal annealing $(800 - 900^{\circ}C)$. Technological process is manageable at any glass production facility worldwide.

Glass samples produced by Schott Company (Mainz)

Two types of the glass materials have been delivered in 2021: 5 samples with 20x20x5 mm³ dimensions; 5 samples with 20x20x50 mm³ dimensions;

Long DSB glass sample 2x2x15 cm³ was delivered in 2022

Transmittance vs sample thickness

DSB glass samples: Light Yield

Measurements were done with ²⁴¹Am γ -source (E γ = 60 keV), PMT Hamamatsu R2059

Light yield vs sample thickness

DSB glass samples: radiation damage

⁶⁰Co source dose rate = 0.7 Gy/min.

Properties evolution

Properties evolution

Large DSB glass sample: 2x2x15 cm³

Beam test results with marked high-energy photons @ MAMI June 2023

Sample was wrapped in 8 layers of teflon film Attached to Hamamatsu 2059 PMT Optical grease: Basylon 300.000 Measurements were done for three High Voltages of PMT: 1500, 1550, 1700 V Photon (Tagger) energies: 19.4 28.3 39.8 58.1 69.2 100.6 MeV 16 channel digitizer CAEN 1730 V was used for data acquisition

For every channel information of time marker and trace with 1 microsecond length was recorded if amplitude was above threshold.

Energy was defined as a sum pulse of the trace.

Coincidence scheme was realized as logic AND of time markers between DSB channel and logic OR of six Tagger channel.

Large DSB glass sample: 2x2x15 cm³

Photon (Tagger) energies: 19.4 28.3 39.8 58.1 69.2 100.6 MeV

Energy distributions of six tagger energies

Fits with Novosibirsk fitting function

Large DSB glass sample: 2x2x15 cm³

Energy resolution

Three samples (5 mm, 5 cm and 15 cm length) were provided to Caltech for tests Samples will be tested in the CalVision beam test at DESY this Summer

All samples measured at Galteen TIET Orystal Eab									
	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO Glass	DSB:Ce Glass	ABS:Ce Glass
Density (g/cm³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	4.3	6.0
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁷	1550	?
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	2.58	1.55
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.90	3.24	2.50
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	30.9	24.7
Z _{eff} value	71.5	73.8	73.6	76.7	74.7	11.1	41.4	49.5	56.9
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	6.1	8.0
Emission Peak ^a (nm)	480	470	425 420	١	420	300 750	365	420	400
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	?	?	?
LY (ph/MeV)⁰	7,500	1,500	130	١	150	7,900	450	>1,360	>1,140
Decay Timeª (ns)	300	100	30 10	٨	3	300 3200	40	500	1,200
d(LY)/dT (%/°C)°	-0.9	?	-2.5	١	?	?	?	0.3	?
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	2.0	2.0	<1

All samples measured at Caltech HED Crystal I

^{a.} Top line: slow component, bottom line: fast component.

^{b.} At the wavelength of the emission maximum.

^{c.} At room temperature (20°C) with PMT QE taken out.

1/18/2024

Presented by Ren-Yuan Zhu of Caltech in CalVision Monthly Meeting

Conclusion

- PEN material is a potential cost-effective organic scintillator
- Further properties optimization and investigation should be done
- Oxyorthosilicates and garnets demonstrates dependence of scintillation kinetics timing properties on co-dopings with temperature changes. Fitting of the average pulse shape is fast method of the kinetics properties evaluation
- DSB glass material can be considered as potential material for large volume homogenous calorimeters, but technology should be optimized improving properties uniformity and density increasing. Project application in frames of ECFA DRD-on-Calorimetry Collaboration?