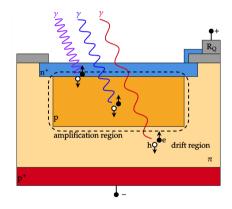
Non-linear Response of Silicon Photomultipliers

Lukas Brinkmann

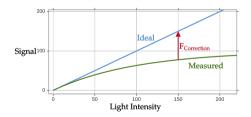
February 20, 2024



Lukas Brinkmann

What is a SiPM?

- A Silicon Photomultiplier (SiPM) is a photo-detector operating in the red-to-near UV range
- Some useful properties;
 - high photon-detection efficiency (> 50%)
 - ▶ good time resolution (< 100 ps)
 - Iow noise
 - single-photon counting capability
 - insensitivity to magnetic fields
- Used for Particle Physics Experiments, Medical Imaging, LiDAR (Light Detection and Ranging), ...

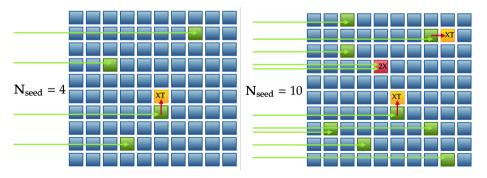

Motivation and Scope of Work

Motivation

- SiPMs used for single photon detection in linear regime
- Array of single-photon avalanche diodes (binary devices)
- Pixel-like design introduces non-linearity at high photon numbers

Scope of the Work

- Develop measurement for non-linearity
- Analyze statistical moments for SiPM response characterization
- Implement corrections; Expand applications

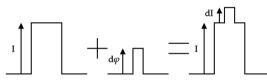


Understanding SiPM Non-Linear Response

- $\bullet\,$ Charge generated by pixel avalanche $q_{\rm pixel}$
- SiPM signal is charge generated by all fired pixels $N_{\rm fired}$

$$Q = q_{\mathsf{pixel}} \cdot N_{\mathsf{fired}}$$

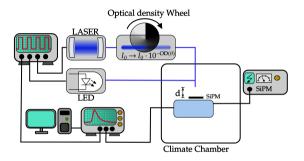
- $\longrightarrow\,$ SiPM response is linear when each incoming photon triggers a different pixel


Lukas Brinkmann

Non-linear Response of SiPMs

February 20, 2024 4 / 17

Measurement Setup: Single Step Method


• **Method:** Determine non-linearity by measuring the change in amplitude when a fixed, small light pulse is added to a variable intensity base pulse.

I : LASER, $d\varphi$: LED, dI : LED*(effective LED light)

- Add fixed, small amplitude $\mathrm{d} arphi$ to the existing amplitude I, resulting in $I+\mathrm{d} I$
- $\bullet\,$ Measure non-linearity with $(I+\mathrm{d} I)-I\leq\mathrm{d}\varphi$

Setup and Measurement

Parameter	Symbol	Value
Wavelength LASER Wavelength LED Effective photosensitive area Pixel pitch Photon detection efficiency at $\lambda_{\rm LED}$ Number of pixels Breakdown voltage	λ_{LASER} λ_{LED} - - PDE N_{pixel} V_{br}	$\begin{array}{c} 451\text{nm} \\ 458\text{nm} \\ 1.3 \times 1.3\text{mm} \\ 15\mu\text{m} \\ 32\% \\ 7296 \\ (37.270\pm0.023)\text{V} \end{array}$

- Regulate the LASER intensity by setting the angle of the neutral density filter wheel
 - $OD = f(\theta)$, OD = optical density
 - ► Intensity(θ) = 100 · 10^{-OD} = 100 · 10^{-f(θ)}
- Acquire 50k waveforms with 1 kHz frequency
- Turn ON the LED and acquire 50k waveforms with 1 kHz frequency
- Turn OFF the LED and go back to point 1
- Waveforms are integrated over a gate with a tunable length

Lukas Brinkmann

Non-linear Response of SiPMs

February 20, 2024 6 / 17

Integration of the waveforms

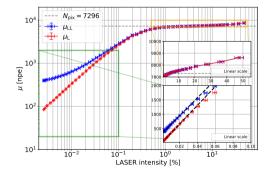
Average waveform for LASER intensity 0.0021% without LED

 $\begin{array}{l} \text{Integrate 50k waveforms over } t_{\text{gate}} = 100 \, \text{ns} \rightarrow \\ Q_{\text{Pulse}} = [Q_{\text{Pulse1}}, Q_{\text{Pulse2}}, \ldots, Q_{\text{Pulse50000}}] \end{array}$

Calculate the Mean, RMS and Skewness of the integrated charge histogram

Lukas Brinkmann

Parameter Scans

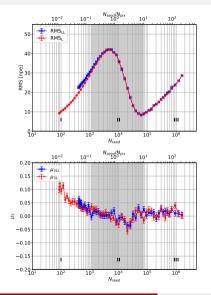

S	can	$V_{\rm over}$	T	$f_{\rm pulse}$	$t_{\rm gate}$	$P_{\rm Led}$	$\Delta t_{\rm Led}$
Time	e delay	3.94 V	20 °C	1 kHz	100 ns	52%	0 ns — 40 ns

Overvoltage Measurement

Scan	V_{over}	T	$f_{\rm pulse}$	$t_{\rm gate}$	$P_{\rm Led}$	$\Delta t_{\rm Led}$
Overvoltage	1.94V-4.94V	20 °C	1 kHz	100 ns	52%	0 ns

• Effect of varying overvoltages on the response function

Mean of the integrated charge

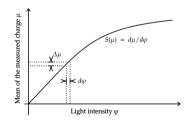


- Mean values of μ_L and μ_{LL} versus linear LASER intensity
- Y-axis converted to unitless number of photo electrons (*npe*):

$$\mu[npe] = \frac{\mu}{R_{\rm L} \cdot e \cdot G}$$

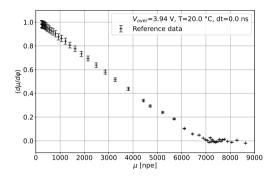
- LASER+LED and Laser illumination charges differ at low-intensity
- Difference decreases with increasing LASER intensity
- SiPM response exceeds 7296 physical pixels
- Full saturation does not occur for this SiPM

RMS and skewness of the integrated charge

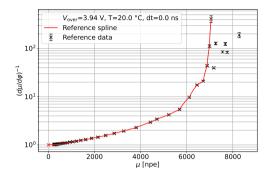

- RMS increases with light intensity, peaking before seed photons match total pixels
- RMS decreases to a minimum, akin to low light intensity
- Second RMS growth after minimum not understood
- RMS broader for LASER+LED at low intensity than LASER alone for same seed photons
- Increase in RMS possibly due to difference in pulse widths (LASER 50 ps, LED 980 ps)
- Skewness consistent with zero for $N_{\rm seed}>1000,$ approaching Gaussian

Correcting Non-Linearity: Method

Goal


Correct response function only using measured quantities, x-axis independent.

- Single-Step $d\varphi$ (LED only)
- Mean LASER μ_L
- Mean LASER+LED μ_{LL}

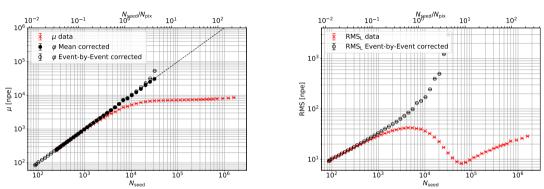


 $\mu = (\mu_{\rm LL} + \mu_{\rm L})/2$ $S(\mu) = \frac{d\mu}{d\omega}$ $d\varphi = \frac{d\mu}{S(\mu)}$ $\varphi = \int_0^\mu \frac{1}{S(\mu)} d\mu$ $\varphi = \int_0^\mu \frac{1}{\frac{\Delta \mu}{d\omega}} d\mu$ $\varphi = \int_{-1}^{\mu} \left(\frac{(\mu_{\rm LL} - \mu_{\rm L})}{d \varphi} \right)^{-1} d\mu$

Correcting Non-Linearity: Function

- Normalized difference $\frac{(\mu_{LL}-\mu_L)}{d\varphi}$ starts at 1 (full LED detection)
- Falls off to 0 (no LED detection) at $\mu\approx N_{\rm pix}\approx 7300$

• Inverse of the normalized difference is the integrand of:

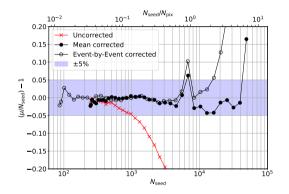

$$\varphi = \int_0^\mu \left(\frac{(\mu_{LL} - \mu_L)}{d\varphi}\right)^{-1} d\mu.$$

February 20, 2024

12/17

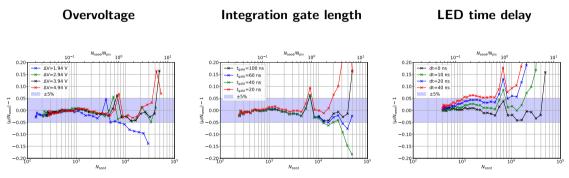
Lukas Brinkmann

Event-by-Event application of correction



Mean

RMS


- Two correction methods presented: correction of mean at equal light intensity and event-by-event correction
- In both cases, mean value of corrected data is linear
- Event-by-event correction linearizes the RMS up to a point of slight overcorrection

Event-by-Event application of correction

- Response linearity is plotted by subtracting a slope of one from the data
- Uncorrected data diverges from linearity by more than $\pm 5\%$ for $N_{\rm seed} \ge 1000 \sim 0.15 \cdot N_{\rm pix}$
- Mean corrected data stays within $\pm 5\%$ of linearity up to $N_{\rm seed} \geq 45000 \sim 6 \cdot N_{\rm pix}$, excluding the single outlier at $N_{\rm seed} \sim N_{\rm pix} = 7296$
- Event-by-Event corrected data diverges at $N_{\rm seed} \geq 15000 \sim 2 \cdot N_{\rm pix}$

Correcting non reference data

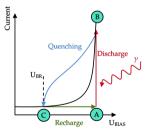
- Response linearized to \pm 5% up to a signal equal to $N_{\rm pix}$ even if integration gate of the data is significantly shorter than that used to determine the calibration curve
- Reference calibration function can linearize data taken with different overvoltage or with different delay between the two light sources

Conclusion and Outlook

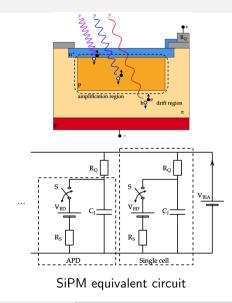
Conclusion

- Developed method/setup to measure SiPM response
- Response function of Hamamatsu SiPM (S14160-1315PS) was measured
- Response function shows negligible dependence on the operating voltage within the 2V 5V overvoltage range
- Possibility to measure response function of SiPM once and still correct it if operating voltage changes
- Minor dependence on integration gate within 20 ns 100 ns for specific signal shape of this SiPM
- Event-by-event correction of each measured charge demonstrated to work

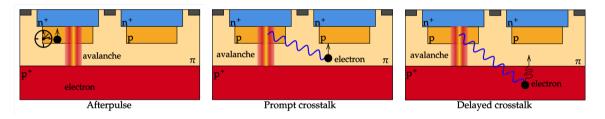
Outlook


- Temperature, noise and radiation dependence of response curve
- SiPM type dependencies

Thank you for listening

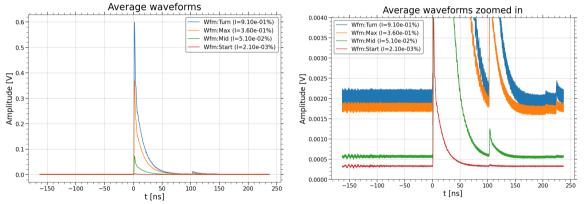

Any questions or suggestions?

How does a SiPM work?


- A Switch open and SiPM at $\mathrm{V}_{\mathrm{BIAS}}$
- B Switch closed, avalanche breakdown and voltage drop to $V_{\rm BD}$
- C Switch open, avalanche quenched and recharge to initial state

SiPM cycle

Afterpulse and Crosstalk

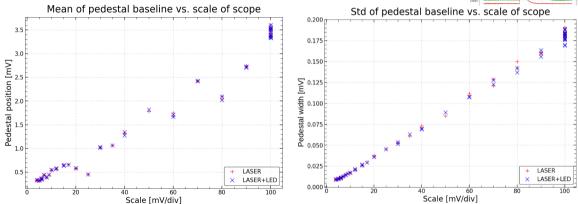

Lukas Brinkmann

Non-linear Response of SiPMs

February 20, 2024 17 / 17

Waveforms

Average waveforms for different LASER intensities: 0.0021%, 0.051%, 0.36%, 0.91%



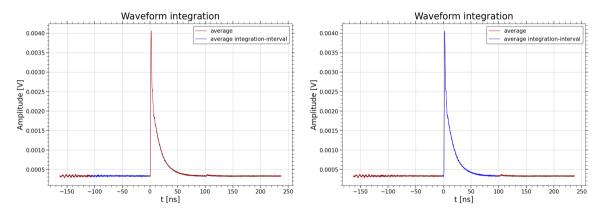
 \rightarrow Shift of pedestal caused by change in vertical scale of oscilloscope?

Lukas Brinkmann

Pedestal Shift

Position and width of pedestal (before the pulse) for different vertical scales

ightarrow Clear correlation between pedestal position/width and vertical scale

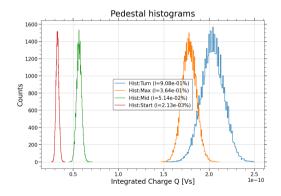

Lukas Brinkmann

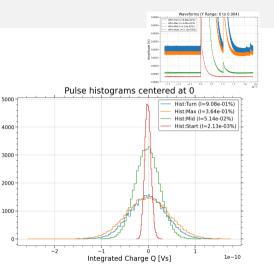
Non-linear Response of SiPMs

University of the Abort of the

From Waveform to Histogram

Average waveform for LASER intensity 0.0021% without LED


Integrate 50k waveforms over $t_{\text{gate}} = 100 \text{ ns} \rightarrow Q_{\text{Ped}} = [Q_{\text{Ped1}}, Q_{\text{Ped2}}, \dots, Q_{\text{Ped50000}}]$


 $\begin{array}{l} \text{Integrate 50k waveforms over } t_{\text{gate}} = 100 \, \text{ns} \rightarrow \\ Q_{\text{Pulse}} = [Q_{\text{Pulse1}}, Q_{\text{Pulse2}}, \ldots, Q_{\text{Pulse50000}}] \end{array}$

Lukas Brinkmann

Histograms

Integrated charge histograms for pedestal and pulse: $0.0021\%,\,0.051\%,\,0.36\%,\,0.91\%.$

Position and width change for integrated charge similar to baseline.

The largest width does not correspond to the highest intensity (see upcoming slides).

Lukas Brinkmann

Non-linear Response of SiPMs

Counts

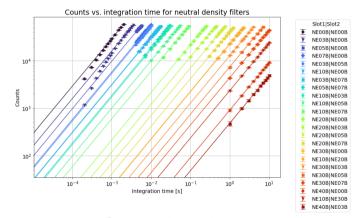
February 20, 2024 17 / 17

Characterization of Neutral Density Filters

- Light source used with 450+10nm color filter
- Neutral density filters and wheel placed in 3D printed mount
- Spectrometer fiber and light source fiber also coupled in 3D housing

OceanOptics Miniature Flame Spectrometer

(Top) 3D printed housing for the filters; (Bottom) Wheel and motor control



Light source with color filter

Analysis neutral density filters

- Right shows the mean count for different integration times for half of the filter combinations
- Fit in the linear range
 - The last 7 points since low optical density (left side of plot) shows non-linearity
 - For high optical densities full range can be fitted
- Calculate optical density with:

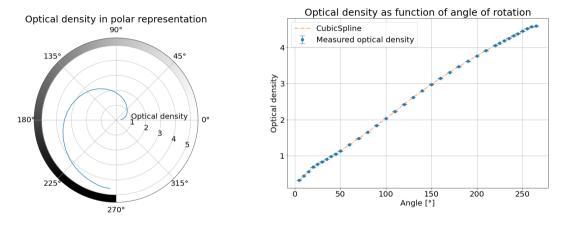
$$\mathsf{OD} = -\log\left(\frac{a_{\mathsf{filter}}}{a_{\mathsf{ref}}}\right)$$

Counts vs. integration time

Results for neutral density filters

- Optical density for every possible filter combination. The column and row labels are shorthand, e.g. 07=NE07B.
- Order does not matter (symmetric)
- Optical densities add as expected $OD_{filter1} + OD_{filter2} = OD_{combined}$
- ! 50% deviation for NE40B

ld	OD theo. (datasheet)	OD meas.	T_{meas} [%]	T_{theo} [%]
NE03B	0.3 (0.283)	0.264	54.5	52.20
NE05B	0.5 (0.498)	0.475	33.54	31.80
NE07B	0.7 (0.667)	0.702	19.84	21.46
NE10B	1.0 (0.993)	0.976	10.56	10.02
NE20B	2.0 (2.048)	2.131	0.74	0.89
NE30B	3.0 (3.156)	3.10	0.080	0.070
NE40B	4.0 (4.196)	4.504	0.0031	0.0063


Optical density for combinations of neutral density filter: Second slot									
	00	03	05	07	10	20	30	40	
00	-0.000 ± 0.004	0.265 ± 0.004	0.474 ± 0.004	0.703 ± 0.004	0.977 ± 0.004		3.105 ± 0.007	4.505 ± 0.014	
03	0.262 ± 0.004		0.734 ± 0.004	0.964 ± 0.004	1.229 ± 0.005	2.386 ± 0.006	3.359 ± 0.008	4.769 ± 0.019	
05	0.475 ± 0.004	0.735 ± 0.004		1.195 ± 0.004	1.463 ± 0.005	2.619 ± 0.006	3.593 ± 0.008		
First slot 0 07	0.702 ± 0.004	0.958 ± 0.005	1.196 ± 0.004		1.690 ± 0.006	2.845 ± 0.007	3.820 ± 0.009		
First 10	0.976 ± 0.004	1.229 ± 0.005	1.464 ± 0.005	1.689 ± 0.005		3.117 ± 0.006	4.090 ± 0.008		
20		2.382 ± 0.003	2.619 ± 0.006	2.844 ± 0.006	3.115 ± 0.007				
30	3.105 ± 0.006	3.357 ± 0.007	3.593 ± 0.007	3.818 ± 0.007	4.091 ± 0.010				
40	4.503 ± 0.011	4.777 ± 0.015							

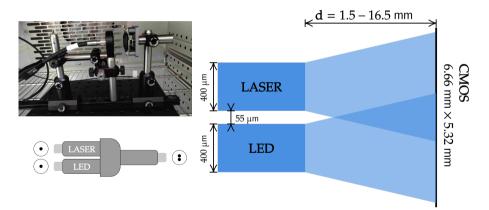
N Dptical density

- 1

- ೧

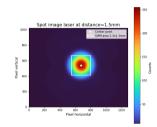
Results neutral density wheel

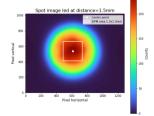
- Optical density is not linearly dependent on turn angle
- Use CubicSpline fit for intermediate optical densities

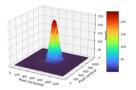

Lukas Brinkmann

Non-linear Response of SiPMs

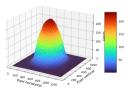
February 20, 2024 17 / 17


Illumination study

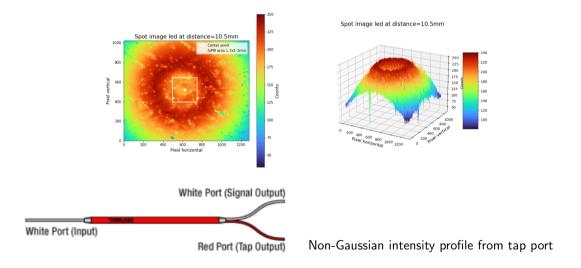

- Motivation: Check spatial uniformity of LASER/LED light
- Method: Measure spatial distribution with CMOS camera at various distances
- Goal: Find minimal distance at which overlap of one standard deviation occurs


Images of LASER and LED spots

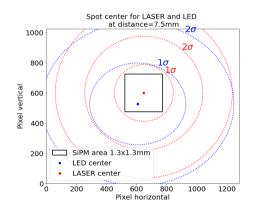
- Both light sources exhibit Gaussian intensity profiles
- LED produces a spatial larger profile
- SiPM represented as a white box
- Calculate mean position and standard deviation for *d* ranging from 1.5 mm to 16.5 mm



Spot image laser at distance=1.5mm



Spot image led at distance=1.5mm


Lukas Brinkmann

50/50 Splitter wrong end

Illumination Study Results

- SiPM centered around the LASER spot, using the larger LED spot
- Distance *d* of 7.5 mm is sufficient for achieving coverage within one standard deviation
- However, this distance results in a reduced overall light intensity

