

Observations from operating Strip-LGAD detectors as in-beam start detector for a TOF system

4. High-D Consortium Meeting 2024

Yevhen Kozymka on behalf of the HADES LGAD group

Low Gain Avalanche detectors

Beam monitoring system for the S-DALINAC

LGAD-based ion imaging system

HADES reaction START Detector

Summary and outlook

Low Gain Avalanche detectors

Low Gain Avalanche Detectors (LGADs)

Thin silicon detector optimized for timing performance

- gain layer exhibits high electric fields (> 300 keV/cm)
 - leads to intrinsic signal amplification
 - results in large signals with short rise times (< 1 ns)</p>
- Why low gain?
 - high gain also amplifies noise
 - leads to temporal signal fluctuations (time jitter)
 - deteriorates time resolution
 - **LGADs** are operated at controlled low gain (\approx 10-30)
 - to optimize SNR and time resolution

Low Gain Avalanche Detectors (LGADs)

LGADs are promising candidates for 4D-tracking

- time resolutions down to 30-50 ps possible
- high spatial resolution (< 100 μm)</p>
- low material budget (X/X₀ \ll 1 %)
- radiation hard ($\approx 10^{15} n_{eq}/cm^2$)
- large areas $\mathcal{O}(cm^2)$

High interest in high energy physics community

- CERN high luminosity upgrade
 - ATLAS High-Granularity Timing Detector (HGTD)
 - CMS Endcap Timing Layer (ETL)
- RD50
- HADES T0 detector
- S-DALINAC beam monitor

- but also medical applications
 - ion therapy beam quality monitor
 - ion imaging

Beam monitoring system for the S-DALINAC

S-DALINAC

Superconducting DArmstadt LINear ACcelerator

Article Published: 26 January 2023

Realization of a multi-turn energy recovery accelerator

Felix Schliessmann ☉, Michaela Arnold, Lars Juergensen, Norbert Pietralla, Manuel Dutins, Marco Fischer, Ruben Grewe, Manuel Steinhorst, Lennart Stobbe & Simon Weih

Nature Physics (2023) Cite this article

666 Accesses | 1 Citations | Metrics

S-DALINAC properties:

- e-beams up to 130 MeV
- 3 GHz time structure (≈ 333 ps between bunches)
- also energy recovery mode is possible (ERL mode)
 - published in Nature Physics (Schliessmann et al. 2023)
 - applying 180° phase shift on the beam
 - energy is put back in RF field
 - 6 GHz time structure (≈ 167 ps between bunches)

Beam monitor for the S-DALINAC in Darmstadt

- Analysis of time difference of subsequent events
 - 3 GHz time-structure could be successfully resolved

Yevhen Kozymka

LGAD-based ion imaging system

Yevhen Kozymka

Ion computed tomography (iCT)

- ion Computed Tomography allows determining the relative stopping power (RSP) distribution inside a patient directly
 - improves treatment planning accuracy
 - requires tracking and energy measurement

- Several prototypes have been developed (Johnson 2018)
 - still no clinical system exists so far
- Meeting all clinical requirements at once is challenging
 - **RSP** accuracy < 1 %
 - energy resolution < 1 %</p>
 - **DAQ** rate $> 10^{6} \cdot 10^{7}$ Hz
- LGADs are perfect detector candidates (Ulrich-Pur et al. 2022)
 - 4D-tracking iCT system
 - incorporate time-of-flight (TOF) measurements into imaging process

LGAD-based iCT system - first experiment

MedAustron testbeam in April 2023

- 10⁵ p/s protons with 83 MeV and 100.4 MeV
- 1.6 mm PMMA slabs for calibration
- pRad of AI stair phantom was recorded
- First TOF-based pRad (Ulrich-Pur et al. 2023)
 - e-Print: 2312.15027 [physics.med-ph]

More tests will follow with upgraded setup

Yevhen Kozymka

HADES reaction START Detector

Yevhen Kozymka

HADES experiment

High Acceptance Di-Electron Spectrometer

- fixed target experiment at GSI, Darmstadt
- heavy ion, proton or secondary π beams
 O (GeV)

Figure: Spies 2022

Investigation of phase diagram of strongly interacting matter at high μ_B and moderate T using rare, penetrating probes (e.g. dileptons)

Figure: Adamczewski-Musch et al. 2019

HADES T_0 detector - overview

T₀ detector

- placed 2 cm in front of the target
- defines start reaction time
 - TOF used for particle identification (PID)
- can also be used for beam monitoring
 - e.g. luminosity monitoring

requirements for the T_0 detector	
sensor size	pprox 2 $ imes$ 2 cm ²
material budget	$X/X_0 < 0.55\%$
time resolution	< 100 ps
spatial resolution	$<$ 500 μm
fill factor	pprox 100 %
particle rates	$O\left(10^{8}\mathrm{protons/s/cm^{2}} ight)$
radiation hardness	pprox 10 ¹⁴ n _{eq} /cm ²

- LGAD are perfect candidates
 - first proof-of-principle test with LGAD prototype sensors at COSY in 2020
 - new sensor production with different sensor geometries was launched at FBK
 - first test as T₀ detector during a p-p shift at GSI in Feb 2022

HADES T₀ detector - current setup

LGAD strip sensor

- $\blacksquare 2 \times 2 \, cm^2$
- thinned to 200 μm
- strips arranged in 2 columns
- fill factor $\approx 94\%$
- 387 µm pitch

- Readout electronics developed at GSI trb.gsi.de
 - custom 2 stage preamplifier board
 - FPGA-based signal discrimination (PaDiWa)
 - FPGA-based TDC for time-over-threshold (ToT) and time-of-arrival (ToA) measurements
- Measurement and analysis
 - two sensors were used for the time measurement
 - arranged orthogonal to each other to retrieve spot size
 - time-walk and offset correction was implemented

HADES T₀ detector - results

- Particle fluence estimation
 - trigger count and window
 - factor for total passed particles
 - beam spot fit yields area
 - calculate neutron equivalent fluence for 4.5 GeV protons

- Example sensor timing precision 124 ps
 - worsens by up to 88 ps after full fluence of $\approx 10^{14}\,n_{eq}/cm^2$
- Radiation damage estimated from timing precision deterioration

Yevhen Kozymka

LGADs for PID

GSI GmbH

T₀ defines collision time

needed for e.g. velocity measurement

- Time precision of single channel > 100 ps
- At Jülich testbeam \approx 90 ps was reached
 - expected pprox 80 ps 90 ps
 - strip capacitance (\approx 10 pF) limits time precision

Yevhen Kozvmka

- no cooling at higher temperatures
- DC coupled FEE instead of AC coupled
- No radiation damage compensation possible
 - beam spot smaller than detector area
 - undamaged strips prohibit voltage increase

polarity for particle identification

Summary and outlook

LGADs are promising 4D-tracking detectors with many applications

- Several R&D scenarios have been tested
 - beam monitor and start reaction time detector for the HADES experiment
 - beam monitor for S-DALINAC
 - ion beam therapy (ion imaging)
- Next generation of LGAD detector
 - new sensors with higher fill factor
 - will be combined with upgraded electronics able to read out large area sensors with hundreds of readout channels
 - dedicated low-mass module design for large-area 4D tracking system planned

Thank you for your attention!

This research was funded in part by the Austrian Science Fund (FWF) Erwin-Schrödinger Grant Nr. J 4762-N, GSI-TU Darmstadt F&E, DFG GRK 2128

References I

_

Adamczewski-Musch, J. et al. (July 2019). "Probing dense baryon-rich matter with
virtual photons". In: Nature Physics 15.10, 1040–1045. ISSN: 1745-2481. DOI:
10.1038/s41567-019-0583-8. URL:
http://dx.doi.org/10.1038/s41567-019-0583-8.
Bisht, A. et al. (2022). "Development of LGAD sensors at FBK". In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 1039, p. 167018. ISSN:
01689002. DOI: 10.1016/j.nima.2022.167018.
Donegani, Elena Maria (2017). Energy-Dependent Proton Damage in Silicon. en.
Vol. Diss. Deutsches Elektronen-Synchrotron, DESY, Hamburg, p. 2017. DOI:
10.3204/PUBDB-2017-08798. URL: http://bib-pubdb1.desy.de/record/333246.
Johnson, Robert P (Jan. 2018). "Review of medical radiography and tomography with
proton beams". en. In: Reports on Progress in Physics 81.1, p. 016701. ISSN:
0034-4885, 1361-6633. DOI: 10.1088/1361-6633/aa8b1d.

- Krüger, W. et al. (2022). "LGAD technology for HADES, accelerator and medical applications". en. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1039, p. 167046. ISSN: 01689002. DOI: 10.1016/j.nima.2022.167046.
 Pietraszko, J et al. (2020). "Low Gain Avalanche Detectors for the HADES reaction
 - time (T₀) detector upgrade". In: *Eur. Phys. J. A* 56.7. DOI:

10.1140/epja/s10050-020-00186-w.

- Sadrozinski, Hartmut F-W et al. (2017). "4D tracking with ultra-fast silicon detectors". In: Reports on Progress in Physics 81.2, p. 026101. DOI: 10.1088/1361-6633/aa94d3.
- Schliessmann, Felix et al. (2023). "Realization of a multi-turn energy recovery accelerator". In: *Nature Physics*. DOI: 10.1038/s41567-022-01856-w.

- Spies, Simon (2022). "Strange hadron production in Ag+Ag collisions at 1.58A GeV". Dissertation, Goethe University Frankfurt, 2022. Dissertation. Frankfurt: Goethe University Frankfurt, p. 241. URL: https://repository.gsi.de/record/246612.
- Ulrich-Pur, Felix et al. (Mar. 2022). "Feasibility study of a proton CT system based on 4D-tracking and residual energy determination via time-of-flight". In: *Physics in Medicine & Biology*. ISSN: 0031-9155, 1361-6560. DOI: 10.1088/1361-6560/ac628b.
- Ulrich-Pur, Felix et al. (2023). "First experimental time-of-flight-based proton radiography using low gain avalanche diodes". In: DOI: 10.48550/ARXIV.2312.15027. URL: https://arxiv.org/abs/2312.15027.

Backup slides

Beam monitor for the S-DALINAC in Darmstadt

- new system with upgraded read-out electronics was tested in December 2022
 - 1 × 1 cm² LGADs from Fondazione Bruno Kessler (FBK) production
 - same discrete FEE (pre-amps) as for HADES experiment
 - new FPGA-based TDC+discriminator (DiRICH5s1) with 32 channels each (trb.gsi.de)

Yevhen Kozymka

18 02 2024

Proof-of-principle measurement at COSY in 2020

Yevhen Kozymka

- test of 2 different LGAD prototype strip sensors from FBK (Pietraszko et al. 2020)
 - $5 \times 4.3 \, \text{mm}^2$
 - 50 µm thickness
 - 16 channels with 146 μm pitch
- 46 μm pitch
- NINO leading-edge discriminator and FPGA-based TDC
- excellent intrinsic time resolution could be shown at COSY:

Future system - large area 4D-tracking system

 novel LGAD sensors with increased fill factor will be investigated

- trench-isolated (TI) and AC-coupled LGADs
- new sensor production planned
- new sensors can be characterised in clean room at GSI
 - IV and CV curve measurements established

Figure: TI LGAD (left) AC LGAD (right) (Bisht et al. 2022)

Additional Figures

Figure: displacement damage cross-sections (Donegani 2017)

Figure: Time walk effect (Sadrozinski et al. 2017)

Additional figures

Figure: Timing precision deterioration